首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
0.5μm部分耗尽SOI MOSFET的寄生双极效应严重影响了SOI器件和电路的抗单粒子和抗瞬态γ辐射能力。文中显示,影响0.5μm部分耗尽SOI NMOSFET寄生的双极器件特性的因素很多,包括NMOSFET的栅上电压、漏端电压和体接触等,尤其以体接触最为关键。在器件处于浮体状态时,0.5μm SOI NMOSFET的寄生双极器件很容易被触发,导致单管闭锁。因此,在设计抗辐射SOI电路时,需要尽量降低SOI NMOSFET寄生双极效应,以提高电路的抗单粒子和抗瞬态γ辐射能力。  相似文献   

2.
Haond  M. Colinge  J.P. 《Electronics letters》1989,25(24):1640-1641
The reduction of drain breakdown voltage in SOI nMOSFETs with floating substrate is related to the presence of a parasitic n-p-n bipolar structure, the base of which is the floating body of the device. reduction of breakdown voltage (compared to the case where a body contact is used) is shown to be dependent on both channel length and minority carrier lifetime in the SOI material. Conversely, it is shown that mere measurement of MOSFET breakdown voltages can be used to extract the minority carrier lifetime in the SOI material.<>  相似文献   

3.
Design guidelines for static and domino silicon-on-insulator (SOI) CMOS circuits are evaluated. Restructuring the logic to eliminate gates with large fan-ins is almost as beneficial for SOI as for bulk-silicon. Most published design fixes for eliminating parasitic bipolar induced upset are shown to aggravate the charge sharing problem. A new and improved predischarge method for enhancing the noise tolerance of SOI domino circuits is thus proposed . The topic of multiple output domino logic in SOI technology is addressed for the first time. Multiple output domino logic is shown to be more prone to bipolar leakage induced upset than regular domino. Many of the design practices used to alleviate bipolar leakage in regular domino are no longer valid due to the multiple output domino logic's inherent design requirements. A novel SOI-specific multiple output domino logic, particularly suitable for adder designs, is introduced to minimize the bipolar leakage risk.  相似文献   

4.
《Microelectronics Journal》2002,33(5-6):387-397
Main stream bulk CMOS and the variants of silicon-on-insulator (SOI) CMOS technologies are discussed with respect to testing for the quiescent current of mixed-signal integrated SOI circuits. The 2–3 times lower static power consumption in fully depleted CMOS/SOI compared to bulk CMOS allows quiescent current testing also for high performance analogue circuits at an acceptable defect resolutions. From first simulations and technological considerations, it turned out that quiescent current tests are able to detect not only commonly known defects, but also SOI specific defects such as self-heating, kink-effect or the parasitic bipolar behaviour. It is further shown that in partially depleted thick-film SOI, the kink-effect and parasitic bipolar transistor support the quiescent current test for some specific defects as they elevate the defective quiescent current level. In fully depleted kink-free SOI circuits, the kink-effect may occur due to process failures but then can be detected by quiescent current tests. A special fault simulation model for the kink-effect is presented. The Iccq test technique is studied for a CMOS/SOI Miller operational amplifier. Normal 6-σ variation of the aspect ratio and the threshold voltage do not jeopardise the defect detection in the quiescent current. First, results confirm the good detection capabilities of the quiescent current test, in particular, of failures which are not visible in the output voltage.  相似文献   

5.
概述了绝缘层上硅横向绝缘栅双极晶体管(SOI LIGBT)抗闩锁结构的改进历程,介绍了从早期改进的p阱深p+欧姆接触SOI LIGBT结构到后来的中间阴极SOI LIGBT、埋栅SOILIGBT、双沟道SOI LIGBT、槽栅阳极短路射频SOI LIGBT等改进结构;阐述了一些结构在抗闩锁方面的改善情况,总结指出抑制闩锁效应发生的根本出发点是通过降低p基区电阻的阻值或减小流过p基区电阻的电流来削弱或者切断寄生双极晶体管之间的正反馈耦合。  相似文献   

6.
The device characteristics of a quasi-SOI power MOSFET were investigated to obtain its optimum device structure. The oxide at the original bottom surface of the bulk power MOSFET of the quasi-SOI power MOSFET formed by reversed silicon wafer direct bonding acts as the buried oxide of the conventional SOI power MOSFET. The short channel effect of the quasi-SOI power MOSFET was larger than that in the conventional SOI power MOSFET. It was suppressed by increasing the width of the oxide in the body region, and the parasitic bipolar effect was suppressed by decreasing it. We also propose a new device structure which can suppress the short channel effect and parasitic bipolar effect of a quasi-SOI power MOSFET based on the results of these experiments  相似文献   

7.
This paper presents a detailed study on the impact of a floating body in partially depleted (PD) silicon-on-insulator (SOI) MOSFET's on various CMOS circuits. Digital very large scale integration (VLSI) CMOS circuit families including static and dynamic CMOS logic, static cascade voltage switch logic (static CVSL), and dynamic cascade voltage switch logic (dynamic CVSL) are investigated with particular emphasis on circuit topologies where the parasitic bipolar effect resulting from the floating body affects the circuit operation and stability. Commonly used circuit building blocks for fast arithmetic operations in processor data-flow, such as static and dynamic carry lookahead circuits and Manchester carry chains, are examined. Pass-transistor-based designs including latch, multiplexer, and pseudo two-phase dynamic logic are then discussed. It is shown that under certain circuit topologies and switching patterns, the parasitic bipolar effect causes extra power consumption and degrades the noise margin and stability of the circuits. In certain dynamic circuits, the parasitic bipolar effect is shown to cause logic state error if not properly accounted for  相似文献   

8.
A physical model for the fully depleted submicrometer SOI MOSFET is described and used to assess the performance of SOI CMOS VLSI digital circuits. The computer-aided analysis is focused on both problematic and beneficial effects of the parasitic bipolar junction transistor (BJT) in the floating-body device. The study shows that the bipolar problems overwhelm the benefits, and hence must be alleviated by controlling the activation of the BJT via device design tradeoffs. A feasible approach to the needed design optimization is demonstrated by veritable device/circuit simulations, which also predict significant speed superiority of SOI over bulk-silicon CMOS circuits in scaled, submicrometer technologies  相似文献   

9.
This paper presents a floating-body charge monitoring technique, which does not require the use of body contacts on the device being monitored. A charge monitor is placed along side with the circuit that is susceptible to the floating-body effects in partially depleted (PD) SOI CMOS circuits. It mimics the circuit topology and operating history of a concerned circuit, specifically the worst-case body voltage of the critical device(s) under consideration. The monitoring is achieved by intentionally triggering a parasitic bipolar current pulse and setting the a state recording latch, which subsequently activates the speed recovering circuitry that compensates the loss of performance at critical circuit nets due to the presence of parasitic bipolar current. Implementation examples are given and described. This technique restores performance and improves timing robustness of the MUX-type and SRAM bit line circuits by minimizing the delay degradation or variation from parasitic bipolar currents.  相似文献   

10.
提出了一种部分耗尽SOI MOSFET体接触结构,该方法利用局部SIMOX技术在晶体管的源、漏下方形成薄氧化层,采用源漏浅结扩散,形成体接触的侧面引出,适当加大了Si膜厚度来减小体引出电阻.利用ISE-TCAD三维器件模拟结果表明,该结构具有较小的体引出电阻和体寄生电容、体引出电阻随器件宽度的增加而减小、没有背栅效应.而且,该结构可以在不增加寄生电容为代价的前提下,通过适当的增加Si膜厚度的方法减小体引出电阻,从而更有效地抑制了浮体效应.  相似文献   

11.
An increased significance of the parasitic bipolar transistor (BJT) in scaled floating-body partially depleted SOI MOSFETs under transient conditions is described. The transient parasitic BJT effect is analyzed using both simulations and high-speed pulse measurements of pass transistors in a sub-0.25 μm SOI technology. The transient BJT current can be significant even at low drain-source voltages, well below the device breakdown voltage, and does not scale with technology. Our analysis shows that it can be problematic in digital circuit operation, possibly causing write disturbs in SRAMs and decreased retention times for DRAMs. Proper device/circuit design, suggested by our analysis, can however control the problems  相似文献   

12.
Measurements of impact-ionized hole current in fully depleted SOI (silicon-on-insulator) MOSFETs at room temperature and liquid nitrogen temperature are reported. The measured current exhibits properties similar to those of the substrate current in bulk transistors, except for higher drain biases when the parasitic bipolar in the device is significant. Since the body contact is effective in collecting only a small fraction of the total generated hole current, the body contact cannot be used to eliminate the bipolar action in thin SOI, at least for channel widths on the order of 10 μm  相似文献   

13.
We introduce Silicon/indium arsenide (Si/InAs) source submicron-device structure in order to minimize the impact of floating body effect on both the drain breakdown voltage and single transistor latch in ultra thin SOI MOSFETs. The potential barrier of valence band between source and body reduces by applying the Indium Arsenide (InAs) layer at the source region. Therefore, we can improve the drain breakdown by suppressing the parasitic NPN bipolar device and the hole accumulation in the body. As confirmed by 2D simulation results, the proposed structure provides the excellent performance compared with a conventional SOI MOSFET thus improving the reliability of this structure in VLSI applications.  相似文献   

14.
源区浅结SOI MOSFET的辐照效应模拟   总被引:3,自引:3,他引:3  
研究了源区浅结的不对称SOIMOSFET对浮体效应的改善 ,模拟了总剂量、抗单粒子事件 (SEU)、瞬时辐照效应以及源区深度对抗辐照性能的影响 .这种结构器件的背沟道抗总剂量能力比传统器件有显著提高 ,并且随着源区深度的减小 ,抗总剂量辐照的能力不断加强 .体接触不对称结构的抗SEU和瞬时辐照能力优于无体接触结构和传统结构器件 ,这与体接触对浮体效应的抑制和寄生npn双极晶体管电流增益的下降有关  相似文献   

15.
A body-contacted (BC) SOI MOSFET structure without the floating-body effect is proposed and successfully demonstrated. The key idea of the proposed structure is that the field oxide does not consume the silicon film on buried oxide completely, so that the well contact can suppress the body potential increase in SOI MOSFET through the remaining silicon film between the field oxide and buried oxide. The junction capacitance of the proposed structure which ensures high-speed operation can also maintain that of the conventional thin-film SOI MOSFET at about 0.5 V. The measured device characteristics show the suppressed floating-body effect as expected. A 64 Mb SOI DRAM chip with the proposed BC-SOI structure has been also fabricated successfully. As compared with bulk MOSFET's, the proposed SOI MOSFET's have a unique degradation-rate coefficient that increases with increasing stress voltage and have better ESD susceptibility. In addition, it should be noted that the proposed SOI MOSFET's have a fully bulk CMOS compatible layout and process  相似文献   

16.
Parasitic bipolar gain in fully depleted n-channel SOI MOSFET's   总被引:3,自引:0,他引:3  
Fully depleted SOI MOSFET's include an inherent parasitic lateral bipolar structure with a floating base. We present here the first complete physically based explanation of the bipolar gain mechanism, and its dependence on bias and technological parameters. A simple, one-dimensional physical model, with no fitting parameters, is constructed, and is shown to agree well with simulations and measurements performed on a new type of SOI MOSFET structure. It is shown that parameters which affect the gain, such as SOI layer thickness, body doping concentration and gate and drain voltages, do so primarily by affecting the concentration of holes in the body region. Thus, current gain falls dramatically with increasing drain voltage due to the associated impact ionization driven increase in the hole concentration. Gummel plots of this parasitic bipolar indicate an apparent ideality factor of 0.5 for the hole current, due to the body hole concentration's dependence on drain voltage  相似文献   

17.
During pulsed stressing of SOI MOSFETs for ESD characterization, the turn-on voltage of the parasitic bipolar transistor was observed to be a function of the stress pulse-width. This observation can be understood in terms of a capacitive charging model. The theory behind this time-dependent snapback is presented in this letter along with the experimental results. Comparisons with bulk-Si devices indicate that this phenomenon is specific to SOI and is a manifestation of the floating body effect  相似文献   

18.
The parasitic bipolar leakage and the large subthreshold leakage due to high floating-body voltage reduce the noise margin and increase the delay of the circuits in the partially depleted silicon-on-insulator (PD/SOI). Differential cascode voltage switch logic (DCVSL) has circuit topologies susceptible to the leakage currents. In this paper, we propose a new circuit style to effectively handle the leakage problems in PD/SOI DCVSL. The proposed low-swing DCVSL (LS-DCVSL) uses the small internal swing to prevent the body of evaluation transistors from being charged to high voltage and, hence, suppress the leakages in DCVSL. Simulation results show that the proposed LS-DCVSL five-input XOR circuit is 33% faster than DCVSL five-input XOR circuit. In addition, the proposed circuit does not experience noise margin reduction due to pass-gate leakage.  相似文献   

19.
A gate-recessed structure is introduced to SOI MOSFETs in order to increase the source-to-drain breakdown voltage. A significant increase in the breakdown voltage can be seen compared with that of a planar single source/drain SOI MOSFET without inducing the appreciable reduction of the current drivability. We have analyzed the origin of the breakdown voltage improvement by the substrate current measurements and 2-D device simulations, and shown that the breakdown voltage improvement is caused by the reductions in the impact ionization rate and the parasitic bipolar current gain  相似文献   

20.
A quasi-SOI power MOSFET has been fabricated by reversed silicon wafer direct bonding. In this power MOSFET, the buried oxide under the channel and source regions is removed and the channel region is directly connected to the source body contact electrode to reduce the base resistance of the parasitic npn bipolar transistor. The quasi-SOI power MOSFET can suppress the parasitic bipolar action and shows lower specific on-resistance than that of the conventional SOI power MOSFET. The fabricated chip level quasi-SOI power MOSFET shows the specific on-resistance of 86 mΩ·mm2 and on-state breakdown voltage of 30 V  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号