首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine is an important gluconeogenic amino acid in postabsorptive humans. To assess the effect of glucagon on renal and hepatic glutamine gluconeogenesis, we infused six normal healthy postabsorptive subjects with glucagon at a rate chosen to produce circulating glucagon concentrations found during hypoglycemia and, using a combination of isotopic and net balance techniques, determined the systemic, renal, and hepatic glucose release and renal and hepatic production of glucose from glutamine. Infusion of glucagon increased systemic and hepatic glucose release (both P < .02), but had no effect on renal glucose release (P = .26). Systemic and hepatic glutamine gluconeogenesis increased from 0.45 +/- 0.3 and 0.11 +/- 0.02 micromol x kg(-1) x min(-1), respectively, to 0.61 +/- 0.04 (P = .002) and 0.31 +/- 0.03 micromol x kg(-1) x min(-1) (P = .001), respectively, whereas renal glutamine gluconeogenesis was unchanged (from 0.33 +/- 0.03 to 0.30 +/- 0.04 micromol x kg(-1) x min(-1), P = .20). The hepatic contribution to systemic glutamine gluconeogenesis increased from 25.2% +/- 6.2% to 51.6% +/- 5.5% (P = .002), while that of the kidney decreased from 74.8% +/- 6.2% to 48.4% +/- 5.5% (P = .003). Glucagon had no effect on the renal net balance, fractional extraction, or uptake and release of either glucose or glutamine. We thus conclude that glucagon stimulates glutamine gluconeogenesis in normal postabsorptive humans, predominantly due to an increase in hepatic glutamine conversion to glucose. Thus, under certain conditions such as counterregulation of hypoglycemia, the liver may be an important site of glutamine gluconeogenesis.  相似文献   

2.
We tested the hypothesis that adenosine is involved in regulating substrate metabolism during exercise. Seven trained cyclists were studied during 30 minutes of exercise at approximately 75% maximal oxygen uptake (VO2max). Lipid metabolism was evaluated by infusing [2H5]glycerol and [1-13C]palmitate, and glucose kinetics were evaluated by infusing [6,6-2H]glucose. Fat and carbohydrate oxidation were also measured by indirect calorimetry. The same subjects performed two identical exercise tests, but in one trial theophylline, a potent adenosine receptor antagonist, was infused for 1 hour before and throughout exercise. Theophylline did not increase whole-body lipolysis (glycerol rate of appearance [Ra]) or free fatty acid (FFA) release during exercise, but fat oxidation was lower than control values (9.5 +/- 3.0 v 18.0 +/- 4.2 micromol x min(-1) x kg(-1), P < .01). Glucose Ra was not affected by theophylline infusion, but glucose uptake was lower (31.6 +/- 4.1 v 40.4 +/- 5.0 micromol x min(-1) x kg(-1), P < .05) and glucose concentration was higher (6.4 +/- 0.6 v 5.8 +/- 0.4 mmol/L, P < .05) than in the control trial. Total carbohydrate oxidation (302.3 +/- 26.2 v 265.5 +/- 11.7 micromol x min(-1) x kg(-1), P < .06), estimated muscle glycogenolysis (270.7 +/- 23.1 v 225.1 +/- 9.7 micromol x min(-1) x kg(-1), P < .05), and plasma lactate concentration (7.9 +/- 1.6 v 5.9 +/- 1.1 mmol/L, P < .001) were also higher during the theophylline trial. These data suggest that adenosine may play a role in stimulating glucose uptake and restraining glycogenolysis but not in limiting lipolysis during exercise.  相似文献   

3.
The ability of portal vein insulin to control hepatic glucose production (HGP) is debated. The aim of the present study was to determine, therefore, if the liver can respond to a selective decrease in portal vein insulin. Isotopic ([3H]glucose) and arteriovenous difference methods were used to measure HGP in conscious overnight fasted dogs. A pancreatic clamp (somatostatin plus basal portal insulin and glucagon) was used to control the endocrine pancreas. A 40-min control period was followed by a 180-min test period. During the latter, the portal vein insulin level was selectively decreased while the arterial insulin level was not changed. This was accomplished by stopping the portal insulin infusion and giving insulin peripherally at half the basal portal rate (PID, n=5). In a control group (n=5), the portal insulin infusion was not changed and glucose was infused to match the hyperglycemia that occurred in the PID group. A selective decrease of 120 pmol/l in portal vein insulin was achieved (basal, 150+/-36 to last 30 min, 30+/-12 pmol/l) in the absence of a change in the arterial insulin level (basal, 30+/-3 to last 30 min, 36+/-4 pmol/l). Neither arterial nor portal insulin levels changed in the control group (30+/-6 and 126+/-30 pmol/l, respectively). In response to the selective decrease in portal vein insulin, net hepatic glucose output (NHGO) increased significantly, from 8+/-1 (basal) to 30+/-6 and 14+/-2 micromol x kg(-1) x min(-1) by 15 min and the last 30 min (P < 0.05) of the experimental period, respectively. Arterial plasma glucose increased from 5.9+/-0.2 (basal) to 10.5+/-0.4 micromol/l (last 30 min). Three-carbon gluconeogenic precursor uptake fell from 11.2+/-2.9 (basal) to 5.9+/-0.7 micromol x kg(-1) x min(-1) (last 30 min), and thus a change in gluconeogenesis could not account for any of the increase in NHGO. With matched hyperglycemia (basal, 5.5+/-0.3 to last 30 min, 10.5+/-0.8 micromol/l) but no change in insulin, NHGO decreased from 12+/-1 (basal) to 0 (-1+/-6 micromol x kg(-1) x min(-1), last 30 min, P < 0.05) and hepatic gluconeogenic precursor uptake did not change (basal, 8.0+/-1.7 to last 30 min, 8.9+/-2.2 micromol x kg[-1] x min[-1]). Thus, the liver responds rapidly to a selective decrease in portal vein insulin by markedly increasing HGP as a result of increased glycogenolysis. These studies indicate that after an overnight fast, basal HGP (glycogenolysis) is highly sensitive to the hepatic sinusoidal insulin level.  相似文献   

4.
OBJECTIVE: People with type 1 diabetes frequently develop a blunted counterregulatory hormone response to hypoglycemia coupled with a decreased hepatic response to glucagon, and consequently, they have an increased risk of severe hypoglycemia. We have evaluated the effect of insulin lispro (Humalog) versus regular human insulin (Humulin R) on the hepatic glucose production (HGP) response to glucagon in type 1 diabetic patients on intensive insulin therapy with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS: Ten subjects on CSII were treated for 3 months with lispro and 3 months with regular insulin in a double-blind randomized crossover study After 3 months of treatment with each insulin, hepatic sensitivity to glucagon was measured in each subject. The test consisted of a 4-h simultaneous infusion of somatostatin (450 microg/h) to suppress endogenous glucagon, regular insulin (0.15 mU x kg(-1) x min(-1)), glucose at a variable rate to maintain plasma glucose near 5 mmol/l, and D-[6,6-2H2]glucose to measure HGP During the last 2 h, glucagon was infused at 1.5 ng x kg(-1) x min(-1). Eight nondiabetic people served as control subjects. RESULTS: During the glucagon infusion period, free plasma insulin levels in the diabetic subjects were 71.7+/-1.6 vs. 74.8+/-0.5 pmol/l after lispro and regular insulin treatment, with plasma glucagon levels of 88.3+/-1.8 and 83.7+/-1.5 ng/l for insulin:glucagon ratios of 2.8 and 3.0. respectively (NS). However, plasma glucose increased to 9.2+/-1.1 mmo/l after lispro insulin compared with 7.1+/-0.9 mmol/l after regular insulin (P < 0.01), and the rise in HGP was 5.7 +/-2.8 micromol x kg(-1) x min(-1) after lispro insulin versus 3.1+/-2.9 micromol x kg(-1) x min(-1) after regular insulin treatment (P=0.02). In the control subjects, HGP increased by 10.7+/-4.2 micromol x kg(-1) x min(-1) under glucagon infusion. CONCLUSIONS: Insulin lispro treatment by CSII was associated with a heightened response in HGP to glucagon compared with regular human insulin. This suggests that insulin lispro increases the sensitivity of the liver to glucagon and could potentially decrease the risk of severe hypoglycemia.  相似文献   

5.
To evaluate glucose kinetics in children with falciparum malaria, basal glucose production and gluconeogenesis and an estimate of the flux of the gluconeogenic precursors were measured in Kenyan children with uncomplicated falciparum malaria before (n = 11) and during infusion of alanine (1.5 mg/kg.min; n = 6). Glucose production was measured by [6,6-2H2]glucose, gluconeogenesis by mass isotopomer distribution analysis of glucose labeled by [2-13C]glycerol. Basal plasma glucose concentration ranged from 2.1-5.5 mmol/L, and basal glucose production ranged from 3.3-7.3 mg/kg.min. Glucose production was largely derived from gluconeogenesis (73 +/- 4%; range, 52-93%). During alanine infusion, plasma glucose increased by 0.4 mmol/L (P = 0.03), glucose production increased by 0.8 mg/kg.min (P = 0.02), and gluconeogenesis increased by 0.8 mg/kg.min (P = 0.04). We conclude that glucose production in children with uncomplicated falciparum malaria is largely dependent on gluconeogenesis. However, gluconeogenesis is potentially limited by insufficient precursor supply. These data indicate that in children with falciparum malaria, gluconeogenesis fails to compensate in the presence of decreased glycogen flux to glucose, increasing the risk of hypoglycemia.  相似文献   

6.
Fructose activates glucokinase by releasing the enzyme from its inhibitory protein in liver. To examine the importance of acute activation of glucokinase in regulating hepatic glucose uptake, the effect of intraportal infusion of a small amount of fructose on net hepatic glucose uptake (NHGU) was examined in 42 h-fasted conscious dogs. Isotopic ([3-3H] and [U-14C]glucose) and arteriovenous difference methods were used. Each study consisted of an equilibration period (-90 to -30 min), a control period (-30 to 0 min), and a hyperglycemic/hyperinsulinemic period (0-390 min). During the latter period, somatostatin (489 pmol x kg(-1) x min(-1)) was given, along with intraportal insulin (7.2 pmol x kg(-1) x min(-1)) and glucagon (0.5 ng x kg(-1) x min(-1)). In this way, the liver sinusoidal insulin level was fixed at four times basal (456 +/- 60 pmol/l), and liver sinusoidal glucagon level was kept basal (46 +/- 6 ng/l). Glucose was infused through a peripheral vein to create hyperglycemia (12.5 mmol/l plasma). Hyperglycemic hyperinsulinemia (no fructose) switched net hepatic glucose balance (micromoles per kilogram per minute) from output (11.3 +/- 1.4) to uptake (14.7 +/- 1.7) and net lactate balance (micromoles per kilogram per minute) from uptake (6.5 +/- 2.1) to output (4.4 +/- 1.5). Fructose was infused intraportally at a rate of 1.7, 3.3, or 6.7 micromol x kg(-1) x min(-1), starting at 120, 210, or 300 min, respectively. In the three periods, portal blood fructose increased from <6 to 113 +/- 14, 209 +/- 29, and 426 +/- 62 micromol/l, and net hepatic fructose uptake increased from 0.03 +/- 0.01 to 1.3 +/- 0.4, 2.3 +/- 0.7, and 5.1 +/- 0.6 micromol x kg(-1) x min(-1), respectively. NHGU increased to 41 +/- 3, 54 +/- 5, and 69 +/- 8 micromol x kg(-1) x min(-1), respectively, and net hepatic lactate output increased to 11.0 +/- 3.2, 15.3 +/- 2.7, and 22.4 +/- 2.8 micromol x kg(-1) x min(-1) in the three fructose periods, respectively. The amount of [3H]glucose incorporated into glycogen was equivalent to 69 +/- 3% of [3H]glucose taken up by the liver. These data suggest that glucokinase translocation within the hepatocyte is a major determinant of hepatic glucose uptake by the dog in vivo.  相似文献   

7.
The present studies were undertaken to determine whether people with type 2 diabetes are resistant to the effects of glucose as well as insulin. Diabetic and nondiabetic subjects were studied on three occasions. Hormone secretion was inhibited with somatostatin. Insulin concentrations were kept at "basal" levels (referred to as low insulin infusion) from 0 to 180 min then increased to approximately 200 pmol/l from 181 to 360 min (referred to as high insulin infusion). Glucose concentrations were clamped at either approximately 95, approximately 130, or approximately 165 mg/dl on each occasion. In the presence of basal insulin concentrations, a progressive increase in glucose from 95 to 130 to 165 mg/dl was accompanied by a comparable and progressive decrease (P = 0.001 to 0.003 by analysis of variance [ANOVA]) in endogenous glucose production (measured with [6-(3)H]glucose) and total glucose output (measured with [2-(3)H]glucose) and incorporation of 14CO2 into glucose (an index of gluconeogenesis) in both diabetic and nondiabetic subjects, indicating normal hepatic (and perhaps renal) response to glucose. In the nondiabetic subjects, an increase in glucose concentration from 95 to 130 to 165 mg/dl resulted in a progressive increase in glucose disappearance during both the low (19.9 +/- 1.8 to 23.6 +/- 1.8 to 25.4 +/- 1.6 micromol x kg(-1) x min(-1); P = 0.003 by ANOVA) and high (36.4 +/- 3.1 to 47.6 +/- 4.5 to 61.1 +/- 7.0 micromol x kg(-1) x min(-1); P = 0.001 by ANOVA) insulin infusions. In contrast, in the diabetic subjects, whereas an increase in glucose from 95 to 130 mg/dl resulted in an increase in glucose disappearance during both the low (P = 0.001) and high (P = 0.01) dose insulin infusions, a further increase in glucose concentration to 165 mg/dl had no further effect (P = 0.41 and 0.38) on disappearance at either insulin dose (low: 14.2 +/- 0.8 to 18.2 +/- 1.1 to 18.7 +/- 2.4 micromol x kg(-1) x min(-1); high: 21.0 +/- 3.2 to 33.9 +/- 6.4 to 32.5 +/- 8.0 micromol x kg(-1) x min(-1) for 95, 130, and 165 mg/dl, respectively). We conclude that whereas glucose-induced stimulation of its own uptake is abnormal in type 2 diabetes, glucose-induced suppression of endogenous glucose production and output is not. The abnormality in uptake occurs in the presence of both basal and high insulin concentrations and is evident at glucose concentrations above but not below 130 mg/dl, implying a defect in a glucose-responsive step.  相似文献   

8.
In healthy subjects, basal hepatic glucose production is (partly) regulated by paracrine intrahepatic factors. It is unknown if these paracrine factors also influence basal glucose production in infectious diseases with increased glucose production. We compared the effects of 150 mg indomethacin (n = 9), a nonendocrine stimulator of glucose production in healthy adults, and placebo (n = 7) on hepatic glucose production in Vietnamese adults with uncomplicated falciparum malaria. Glucose production was measured by primed, continuous infusion of [6,6-2H2]glucose. After indomethacin, the plasma glucose concentration and glucose production increased in all subjects from 5.3 +/- 0.1 mmol/L to a maximum of 7.1 +/- 0.3 mmol/L (P < .05) and from 17.6 +/- 0.8 micromol x kg(-1) x min(-1) to a maximum of 26.2 +/- 2.5 micromol x kg(-1) x min(-1) (P < .05), respectively. In the control group, the plasma glucose concentration and glucose production declined gradually during 4 hours from 5.4 +/- 0.2 mmol/L to 5.1 +/- 0.1 mmol/L (P < .05) and from 17.1 +/- 0.8 micromol x kg(-1) x min(-1) to 15.1 +/- 1.0 micromol x kg(-1) x min(-1) (P < .05), respectively. There were no differences in plasma concentrations of insulin, counterregulatory hormones, or cytokines between the groups. We conclude that indomethacin administration results in a transient increase in glucose production in patients with uncomplicated falciparum malaria in the absence of changes in plasma concentrations of glucoregulatory hormones or cytokines. Thus, this study indicates that in uncomplicated falciparum malaria, the rate of basal hepatic glucose production is also regulated by paracrine intrahepatic factors.  相似文献   

9.
To evaluate the relationship between oxidative stress and glucose metabolism, insulin sensitivity and intraerythrocytic reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio were measured in 10 non-insulin-dependent diabetes mellitus (NIDDM) patients and 10 healthy subjects before and after the intravenous administration of GSH. In particular, after baseline insulin sensitivity was assessed by a 2-hour euglycemic hyperinsulinemic clamp, either glutathione (1.35 g x m2 x min(-1)) or placebo (saline) were infused over a period of 1 hour. The same protocol was repeated at a 1-week interval, in cross-over, according to a randomized, single-blind design. In healthy subjects, baseline intraerythrocytic GSH/GSSG ratio (P < .0005) and total glucose uptake (P < .005) were significantly higher than in NIDDM patients. In the same subjects, GSH infusion significantly increased total glucose uptake (from 37.1 +/- 6.7 micromol kg(-1) x min(-1) to 39.5 +/- 7.7 micromol x kg(-1) x min(-1), P < .05), whereas saline infusion was completely ineffective. In addition, the mean intraerythrocytic GSH/GSSG ratio significantly increased after GSH infusion (from 21.0 +/- 0.9 to 24.7 +/- 1.3, P < .05). Similar findings were found in diabetic patients, in whom GSH infusion significantly increased both total glucose uptake (from 25.3 +/- 9.0 micromol x kg(-1) x min(-1) to 31.4 +/- 10.0 micromol x kg(-1) x min(-1), P < .001) and intraerythrocytic GSH/GSSG ratio (from 14.8 +/- 4.1 to 21.7 +/- 6.7, P < .01). Pooling diabetic patients and controls, significant correlations were found between intraerythrocytic GSH/GSSG ratio and total glucose uptake (r = .425, P < .05), as well as between increments of the same variables after GSH infusion (r = .518, P < .05). In conclusion, our data support the hypothesis that abnormal intracellular GSH redox status plays an important role in reducing insulin sensitivity in NIDDM patients. Accordingly, intravenous GSH infusion significantly increased both intraerythrocytic GSH/GSSG ratio and total glucose uptake in the same patients.  相似文献   

10.
The effect of radiation therapy on substrate metabolism was evaluated in five patients with head and neck or lung cancer. Stable isotope tracer methodology was used to determine urea, amino acid, glucose, and lipid kinetics during postabsorptive conditions before initiation, near the midpoint (after receiving 2,672 +/- 36 rads), and at completion (after receiving 6,072 +/- 307 rad) of a 6- to 8-week course of radiation therapy. Nutritional status was maintained throughout the treatment period by providing supplemental enteral feedings as needed. Postabsorptive plasma insulin, catecholamine, and amino acid concentrations did not change during the course of treatment. Before radiation therapy was initiated, values for the plasma rate of appearance (Ra) of urea (3.35 +/- 0.33 micromol x kg(-1) x min(-1)), alpha-ketoisocaproate ([alpha-KIC] 2.16 +/- 0.19 micromol x kg(-1) x min(-1)), phenylalanine (0.59 +/- 0.052 micromol x kg(-1) x min(-1)), and glucose (10.56 +/- 1.31 micromol x kg(-1) x min(-1)) were in the normal range. However, glycerol and palmitate Ra values (3.11 +/- 0.30 and 2.01 +/- 0.33 micromol x kg(-1) x min(-1), respectively) were 25% higher than values observed previously in normal subjects. Substrate flux did not change during radiation therapy, and measurements obtained during the midpoint and at completion of treatment were similar to initial values. These results demonstrate that large doses of radiation therapy, administered over 6 to 8 weeks to the upper body, do not cause significant metabolic stress.  相似文献   

11.
Release of glucose by liver and kidney are both increased in diabetic animals. Although the overall release of glucose into the circulation is increased in humans with diabetes, excessive release of glucose by either their liver or kidney has not as yet been demonstrated. The present experiments were therefore undertaken to assess the relative contributions of hepatic and renal glucose release to the excessive glucose release found in type 2 diabetes. Using a combination of isotopic and balance techniques to determine total systemic glucose release and renal glucose release in postabsorptive type 2 diabetic subjects and age-weight-matched nondiabetic volunteers, their hepatic glucose release was then calculated as the difference between total systemic glucose release and renal glucose release. Renal glucose release was increased nearly 300% in diabetic subjects (321+/-36 vs. 125+/-15 micromol/min, P < 0.001). Hepatic glucose release was increased approximately 30% (P = 0.03), but increments in hepatic and renal glucose release were comparable (2.60+/-0.70 vs. 2.21+/-0.32, micromol.kg-1.min-1, respectively, P = 0.26). Renal glucose uptake was markedly increased in diabetic subjects (353+/-48 vs. 103+/-10 micromol/min, P < 0.001), resulting in net renal glucose uptake in the diabetic subjects (92+/-50 micromol/ min) versus a net output in the nondiabetic subjects (21+/-14 micromol/min, P = 0.043). Renal glucose uptake was inversely correlated with renal FFA uptake (r = -0.51, P < 0.01), which was reduced by approximately 60% in diabetic subjects (10. 9+/-2.7 vs. 27.0+/-3.3 micromol/min, P < 0.002). We conclude that in type 2 diabetes, both liver and kidney contribute to glucose overproduction and that renal glucose uptake is markedly increased. The latter may suppress renal FFA uptake via a glucose-fatty acid cycle and explain the accumulation of glycogen commonly found in the diabetic kidney.  相似文献   

12.
BACKGROUND: Acute biliary obstruction is associated with the development of renal impairment and oxidative stress. The F2-isoprostanes, formed during oxidant injury, are renal vasoconstrictors acting via thromboxane (TX)-like receptors. We determined whether the formation of F2-isoprostanes is increased in experimental cholestasis and whether thiol containing antioxidants or ligands for the TXA2 receptor could improve renal function. METHODS: The effects on renal function of acute bile duct ligation (BDL) in the rat were studied for two days. The consequences of administration of N-acetylcysteine (NAC), alpha-lipoic acid (LA), the TX receptor antagonist (TXRA) BAYu3405, or placebo were then examined. RESULTS: BDL caused a reduction in creatinine clearance from 1.10 +/- 0.05 to 0.55 +/- 0.05 ml/min and sodium excretion from 52 +/- 3 to 17 +/- 3 micromol/hr. Urinary F2-isoprostanes increased from 14 +/- 2 to 197 +/- 22 pg/ml following BDL. Renal functional changes were ameliorated by NAC (creatinine clearance 0.73 +/- 0.05 ml/min), LA (0.64 +/- 0.03 ml/min), and a TXRA (0.90 +/- 0.15 ml/min); P < 0.05. Similarly, sodium excretion was increased from 17 +/- 3 micromol/hr (placebo) to 34 +/- 3 micromol/hr (NAC), 29 +/- 3 micromol/hr (LA), and 38 +/- 5 micromol/hr (TXRA); P < 0.005. Hepatic glutathione concentrations increased from 6.5 +/- 0.3 micromol/g (normal liver) to 8.8 +/- 0.5 micromol/g (NAC) and 7.7 +/- 0.3 micromol/g (LA), P < 0.01. However, only LA markedly inhibited F2-isoprostane formation (197 +/- 22 to 36 +/- 11 pg/ml creatinine clearance; P < 0.05). Urinary TXB2 excretion was elevated after BDL (2.2 +/- 0.5 to 111.1 +/- 20.3 pg/min) but was unaffected by NAC and LA. CONCLUSION: NAC, LA, and TXRA can partially prevent renal dysfunction in experimental cholestasis. The effects of the antioxidants are independent of their ability to inhibit lipid peroxidation or TX synthesis.  相似文献   

13.
Whole body insulin resistance characterizes patients with NIDDM, but it is not known whether insulin also has impaired ability to stimulate myocardial glucose uptake (MGU) in these patients. This study was designed to evaluate MGU as measured by 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and positron emission tomography (PET) in patients with NIDDM and stable coronary artery disease (CAD) under standardized metabolic conditions. Eight patients with NIDDM, 11 nondiabetic patients with CAD, and 9 healthy control subjects were enrolled in the study. MGU was quantitated in the normal myocardial regions with [18F]FDG and PET and the whole body glucose disposal by glucose-insulin clamp technique (serum insulin, -430 pmol/l). Plasma glucose and serum insulin concentrations were comparable in all groups during PET studies. The whole body glucose uptake was 45% lower in NIDDM patients (22 +/- 9 micromol x min(-1) X kg(-1) body wt [mean +/- SD]), compared with healthy control subjects (40 +/- 17 micromol x min(-1) x kg(-1) body wt, P < 0.05). In CAD patients, whole body glucose uptake was 30 +/- 9 micromol x min(-1) x kg(-1) body wt (NS between the other groups). MGU was similar in the normal segments in all three groups (69 +/- 28 micromol x min(-1) x 100 g(-1) in NIDDM patients, 72 +/- 17 micromol x min(-1) x 100 g(-1) in CAD patients, and 76 +/- 10 micromol x min(-1) x 100 g(-1) in healthy control subjects, NS). No correlation was found between whole body glucose uptake and MGU. As studied by [18F]FDG PET under stable normoglycemic hyperinsulinemic conditions, MGU is not reduced in patients with NIDDM and CAD in spite of peripheral insulin resistance. These findings suggest that there is no significant defect in MGU in patients with NIDDM.  相似文献   

14.
Patients with coronary artery disease or heart failure have been shown to be insulin resistant. Whether in these patients heart muscle participates in the insulin resistance, and whether reduced blood flow is a mechanism for such resistance is not known. We measured heart and skeletal muscle blood flow and glucose uptake during euglycemic hyperinsulinemia (insulin clamp) in 15 male patients with angiographically proven coronary artery disease and chronic regional wall motion abnormalities. Six age- and weight-matched healthy subjects served as controls. Regional glucose uptake was measured by positron emission tomography using [18F]2-fluoro-2-deoxy-D-glucose (FDG), blood flow was measured by the H2(15)O method. Myocardial glucose utilization was measured in regions with normal perfusion and wall motion as assessed by radionuclide ventriculography. Whole-body glucose uptake was 37+/-4 micromol x min(-1) x kg(-1) in controls and 14+/-2 mciromol x min(-1) x kg(-1) in patients (P = 0.001). Myocardial blood flow (1.09+/-0.06 vs. 0.97+/-0.04 ml x min(-1) x g(-1), controls vs. patients) and skeletal muscle (arm) blood flow (0.046+/-0.012 vs. 0.043+/-0.006 ml x min(-1) x g(-1)) were similar in the two groups (P = NS for both). In contrast, in patients both myocardial (0.38+/-0.03 vs. 0.70+/-0.03 micromol x min(-1) x g(-1), P = 0.0005) and muscle glucose uptake (0.026+/-0.004 vs. 0.056+/-0.006 micromol x min(-1) x g(-1), P = 0.005) were markedly reduced in comparison with controls. In the whole dataset, a direct relationship existed between insulin-stimulated glucose uptake in heart and skeletal muscle. Patients with a history of myocardial infarction and a low ejection fraction are insulin resistant. This insulin resistance affects both the myocardium and skeletal muscle and is independent of blood flow.  相似文献   

15.
To our knowledge postoperative hepatic hemodynamics and hepatic metabolism have not been fully studied on a long-term basis. Our goal was to develop a large animal model that would permit the measurement of hepatic blood flow (BF), perihepatic pressures (P), and hepatic metabolism in a long-term setting. Catheters were inserted into the jugular vein, carotid artery, pulmonary artery, hepatic vein, and portal vein (PV) of 27 commercially bred pigs; ultrasonic transit time flowmeter probes were placed around the hepatic artery and PV. Daily postoperative measurements of jugular vein P, carotid artery P, pulmonary artery P, hepatic vein P, and PVP, as well as hepatic artery BF and PVBF, were recorded for 20 days. Hepatic carbohydrate metabolism was assessed by arteriovenous difference techniques. Jugular vein P, pulmonary artery P, hepatic vein P, PVP, and heart rate reached steady-state values during the first week, with a mean +/- SEM of 1.0 +/- 0.3 mm Hg for jugular vein P, 21.4 +/- 2.1 mm Hg for pulmonary artery P, 4.3 +/- 0.4 mm Hg for HVP, 7.8 +/- 0.5 mm Hg for PVP, and 116 +/- 4 beats per minute for heart rate. Mean carotid artery P increased from 65 +/- 3 mm Hg during surgery to 94 +/- 2 mm Hg on postoperative day 1 (P < 0.001) and to a mean 101 +/- 2 mm Hg thereafter. Total hepatic BF reached a steady-state value of 1,132 +/- 187 ml/min by postoperative day 7 (P = 0.19). Over week 1 hepatic artery BF measured as a percentage of total hepatic BF decreased from 35.0 +/- 3.0% to 15.5 +/- 2.7%, and PVBF increased from 65.0 +/- 3.0% to 84.5 +/- 2.7% (P < 0.005); both variables were steady thereafter. In the hemodynamic steady state the net hepatic balances of glucose, lactate, glycerol, and alanine in 5 pigs were 9.9 +/- 4.0, -4.2 +/- 0.4, -2.3 +/- 1.1, and -0.68 +/- 0.22 micromol/kg per min respectively. The net gut (portal-drained viscera) balances of glucose, lactate, alanine, and glycerol were -2.0 +/- 2.5, 1.1 +/- 0.5, 0.73 +/- 0.18, and -0.69 +/- 0.19 micromol/kg per min respectively. Thus, a reliable large animal model was developed to study acute and chronic hepatic hemodynamics and metabolism.  相似文献   

16.
Glucagon may regulate FFA metabolism in vivo. To test this hypothesis, six healthy male volunteers were infused with somatostatin, to inhibit endogenous hormone secretion, and insulin, glucagon, and GH to replace endogenous secretion of these hormones. In the hypoglucagonemia experiments, the glucagon infusion was omitted, and in the hyperglucagonemic experiments glucagon was infused at 1.3 ng/kg.min, to produce physiological hyperglucagonemia. In two sets of control experiments, glucagon was infused at 0.65 ng/kg.min, in order to maintain peripheral euglucagonemia, and the plasma glucose concentrations were clamped at the levels observed in either the hypo- or hyperglucagonemic experiments. Rates of FFA and glycerol (an index of lipolysis) appearance (Ra) were estimated with the isotope dilution method using [1-14C]palmitate and [2H5] glycerol. Plasma glucagon concentrations decreased during the hypoglucagonemic experiments (85 +/- 12 vs. 123 +/- 22 ng/L, P < 0.05) and increased during the hyperglucagonemic experiments (186 +/- 20 vs. 125 +/- 15 ng/L, P < 0.05), whereas other hormone concentrations remained the same. Hypoglucagonemia resulted in equivalent suppression of FFA Ra (3.7 +/- 0.2 vs. 5.9 vs. 0.3 mumol/kg.min, P < 0.01) and glycerol Ra (1.2 +/- 0.2 vs. 2.2 +/- 0.5 mumol/kg.min, P < 0.05). Similarly, hyperglucagonemia resulted in equivalent stimulation of FFA Ra (5.2 +/- 0.4 vs. 3.7 +/- 0.3 mumol/kg.min, P < 0.05) and glycerol Ra (1.5 +/- 0.3 vs. 1.1 +/- 0.1 mumol/kg.min, P < 0.05). These results indicate that glucagon has a physiological role in the regulation of FFA metabolism in vivo.  相似文献   

17.
BACKGROUND: Breath tests are currently used to qualitatively assess colonic fermentation; no quantitative estimations are available for healthy subjects. OBJECTIVE: This study describes a stable-isotope-dilution method to measure acetate production quantitatively from colonic bacterial fermentation. DESIGN: Six volunteers received a primed, constant, intravenous infusion of [1-13C]acetate at a rate of 1.01 +/- 0.04 micromol x kg(-1) x min(-1) for 7 h. They ingested 20 g pure lactulose after 1 h of the tracer infusion. Expired air and arterialized venous blood were sampled every 15 min. RESULTS: Before lactulose intake, the breath-hydrogen concentration was 7 +/- 2 ppm and the plasma acetate concentration and isotopic enrichment were 141 +/- 14 micromol/L and 14.8 +/- 1.4 moles percent excess, respectively. Whole-body acetate turnover was 6.0 +/- 0.7 micromol x kg(-1) x min(-1). After lactulose ingestion, maximum breath hydrogen and acetate concentrations reached 63 +/- 15 ppm (P = 0.004) and 313 +/- 25 micromol/L (P = 0.002), respectively, whereas [13C]acetate enrichment decreased to 9.9 +/- 1.3 moles percent excess (P = 0.03). Whole-body acetate turnover increased to 9.8 +/- 1.5 micromol x kg(-1) x min(-1) and later decreased almost to baseline values. Colonic lactulose fermentation yielded 140 +/- 12 mmol acetate over 6 h, representing 86% of the production based on stoichiometric equations. CONCLUSION: This new method provides a quantitative estimate of colonic carbohydrate fermentation via evaluation of acetate production.  相似文献   

18.
We tested the hypothesis that endothelium-dependent vasodilatation is a determinant of insulin resistance of skeletal muscle glucose uptake in human obesity. Eight obese (age 26+/-1 yr, body mass index 37+/-1 kg/m2) and seven nonobese males (25+/-2 yr, 23+/-1 kg/m2) received an infusion of bradykinin into the femoral artery of one leg under intravenously maintained normoglycemic hyperinsulinemic conditions. Blood flow was measured simultaneously in the bradykinin and insulin- and the insulin-infused leg before and during hyperinsulinemia using [15O]-labeled water ([15O]H2O) and positron emission tomography (PET). Glucose uptake was quantitated immediately thereafter in both legs using [18F]- fluoro-deoxy-glucose ([18F]FDG) and PET. Whole body insulin-stimulated glucose uptake was lower in the obese (507+/-47 mumol/m2 . min) than the nonobese (1205+/-97 micromol/m2 . min, P < 0.001) subjects. Muscle glucose uptake in the insulin-infused leg was 66% lower in the obese (19+/-4 micromol/kg muscle . min) than in the nonobese (56+/-9 micromol/kg muscle . min, P < 0.005) subjects. Bradykinin increased blood flow during hyperinsulinemia in the obese subjects by 75% from 16+/-1 to 28+/-4 ml/kg muscle . min (P < 0.05), and in the normal subjects by 65% from 23+/-3 to 38+/-9 ml/kg muscle . min (P < 0.05). However, this flow increase required twice as much bradykinin in the obese (51+/-3 microg over 100 min) than in the normal (25+/-1 mug, P < 0.001) subjects. In the obese subjects, blood flow in the bradykinin and insulin-infused leg (28+/-4 ml/kg muscle . min) was comparable to that in the insulin-infused leg in the normal subjects during hyperinsulinemia (24+/-5 ml/kg muscle . min). Despite this, insulin-stimulated glucose uptake remained unchanged in the bradykinin and insulin-infused leg (18+/-4 mumol/kg . min) compared with the insulin-infused leg (19+/-4 micromol/kg muscle . min) in the obese subjects. Insulin-stimulated glucose uptake also was unaffected by bradykinin in the normal subjects (58+/-10 vs. 56+/-9 micromol/kg . min, bradykinin and insulin versus insulin leg). These data demonstrate that obesity is characterized by two distinct defects in skeletal muscle: insulin resistance of cellular glucose extraction and impaired endothelium-dependent vasodilatation. Since a 75% increase in blood flow does not alter glucose uptake, insulin resistance in obesity cannot be overcome by normalizing muscle blood flow.  相似文献   

19.
Previous methods for measuring plasma glycerol specific activity (SA) are suboptimal, making the determination of glycerol kinetics in vivo with radiotracers difficult. A new high performance liquid chromatography (HPLC) method is described that permits the accurate and specific measurement of glycerol SA. The method involves isolation of glycerol from plasma and the formation of a tribenzoyl derivative. Glycerol rate of appearance was measured in five human volunteers using both [2-3H]glycerol and [2H5] glycerol. There was close agreement between the glycerol appearance rates measured using the two approaches (1.66 +/- 0.14 vs. 1.70 +/- 0.10 micromol x kg(-1) x min(-1), respectively, P = NS). This HPLC method offers improved specificity over existing methods of measuring glycerol turnover using radiotracers.  相似文献   

20.
It is increasingly recognized that alterations in non-insulin-mediated glucose uptake (NIMGU) play an important pathogenic role in disorders of carbohydrate metabolism. This study was conducted to determine whether NIMGU is impaired in elderly patients with type 2 diabetes. Healthy elderly control subjects (n = 19, age 76 +/- 1 years, BMI 26.8 +/- 1.1 kg/m2) and elderly patients with type 2 diabetes (n = 19, age 76 +/- 2 years, BMI 27.5 +/- 0.9 kg/m2) underwent a 240-min glucose clamp study. Octreotide was infused to suppress endogenous insulin release, and tritiated glucose methodology was used to measure glucose uptake and disposal rates. For the first 180 min, glucose was kept at fasting levels. From 180 to 240 min, glucose was increased to 11 mmol/l. At fasting glucose levels, glucose uptake was similar in both groups. However, glucose clearance was reduced in patients with diabetes (control 1.68 +/- 0.05 ml x kg(-1) x min(-1); diabetes 1.34 +/- 0.07 ml x kg(-1) x min(-1), P < 0.0001). During hyperglycemia, glucose uptake was reduced in patients with diabetes (control 3.16 +/- 0.09 mg x kg(-1) x min(-1); diabetes 2.57 +/- 0.11 mg x kg(-1) x min(-1), P < 0.0001). Peripheral glucose effectiveness (SG) was less in patients with diabetes (control 1.28 +/- 0.04 ml x kg(-1) x min(-1); diabetes 0.94 +/- 0.08 ml x kg(-1) x min(-1), P < 0.0001). Hepatic glucose output and hepatic SG were not different between groups. We conclude that the effect of glucose on glucose uptake is impaired in elderly patients with type 2 diabetes, a finding that may have therapeutic implications for this patient population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号