首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sintering behavior of three different compositions in the AlN–Al2O3 system using Y2O3 as a sintering aid was investigated. Samples with various ratios of AlN/Al2O3 were sintered in nitrogen atmosphere using a gas pressure furnace in the temperature range 1750–1950 °C. The densification of the samples was studied by shrinkage and relative density measurements. Results showed that samples containing 1 and 70 wt.% alumina were sintered to near theoretical density at 1800 °C; whereas the sample with 20 wt.% alumina never reached densities higher than 93% in the temperature range considered. It was found that the AlN/Al2O3 ratio and the sintering temperature had a great influence on the microstructure and crystalline phases present in the samples, namely, AlN, γ-AlON, 27R, and YAG. In the sample with 20 wt.% alumina, porosity formation prevented further densification. These porosities were probably due to the release of oxygen during sintering.  相似文献   

2.
Ultra high molecular weight polyethylene/alumina (UPE/Al2O3) microcomposites with high loading micro alumina (Al2O3, 20 to 100 phr) were prepared by casting method. The composites were thermal treated (cooled slowly) and then the thermal properties were studied at temperatures from 25 to 125°C. Thermogravimetric analysis (TGA) and scanning electron microscopic (SEM) proves the homodispersion of Al2O3 microparticles in UPE. TGA indicates that the temperature of 5% weight loss of UPE/Al2O3 (100 phr) composite is 467.0°C, 10.5°C higher than that of pure UPE. Differential scanning calorimetry (DSC) shows that the melting point and the real degree of crystal (Xrc) of treated UPE/Al2O3 composite (100 phr) are 141.4°C and 65.7%, respectively, all higher than that of untreated composite, which can be described by crystal bridge mechanism. The density of the composite is also be enhanced because of crystal volume shrinkage induced by thermal treatment. The thermal conductivity of the treated UPE/Al2O3 composite (100 phr) is 1.920 W (m K)?1 at 25°C, 23.6% higher than that of the untreated composite. Crystal bridge thermal conduction mechanism is proposed. The thermal conductivity of UPE/Al2O3 composite has some dependency on the increasing Al2O3 content and also thermal treatment. These results can give some advice to design formulations for practical applications in pipe area and other wear area. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40528.  相似文献   

3.
Tapes of TiO2-MnO-doped alumina (d-Al2O3) and pure alumina (Al2O3) were shaped via tape casting. Laminates with three different layer numbers and respective thicknesses were produced and sintered at 1200°C. The microstructure and mechanical behavior of laminates were investigated and compared to the respective monolithic references (d-Al2O3 and Al2O3). The use of dopants in alumina decreased the initial sintering temperature, leading to higher densification at 1200°C (~98% theoretical density (TD)) when compared to Al2O3 (~73% TD). The higher density was reflected in a higher Young's modulus and hardness for doped alumina. A region of diffusion of dopants in pure alumina layers was observed along the interface with doped layers. The mechanical strength of d-Al2O3 samples sintered at 1200°C was not statistically different from Al2O3 samples sintered at 1350°C. The strength of laminates composed of doped layers with undoped, porous interlayers did not change. Nevertheless, as the thickness of these porous interlayers increases, a loss of strength was observed. Monolithic references showed constant values of fracture toughness (KIC), ~2 MPa·m1/2, and linear crack path. On the other hand, KIC of laminates increases when the crack propagates from weak Al2O3 layers to dense d-Al2O3 layers.  相似文献   

4.
Epoxy microcomposites with high loading micro alumina (Al2O3, 100–400 phr) were prepared by casting method and their thermal and electrical properties were studied at temperatures from 25 to 150 °C. The electric resistance device and the dielectric electrode device were designed to measure the electrical properties of the composites. Thermogravimetric analysis (TGA) and scanning electron microscopic proves the homodispersion of Al2O3 microparticles in epoxy. TGA indicates that the temperature of 5 % weight loss of epoxy/Al2O3 (100 phr) composite is 366 °C, 34 °C higher than that of pure epoxy. Differential scanning calorimetry shows that the glass transition temperature of epoxy/Al2O3 composite (400 phr) increases to 114.7 °C, 9.2 °C higher than that of pure epoxy. Thermal conductivity test demonstrated that with increasing Al2O3 content at 25 °C, thermal conductivity of epoxy/Al2O3 composites increased to 1.382 W/(m K) which is 5.62 times that of pure epoxy. Electrical tests demonstrate that by increasing of Al2O3 content and temperature, the electric resistance and dielectric properties of the composites show great dependencies on them. Resistivities of all the specimens decreased with the increasing of temperature owing to the increasing molecular mobility in the higher temperature. Resistivity of pure epoxy at 25 °C is about 9.56 × 1016 Ω cm, about one order of magnitude higher than that of pure epoxy at 125 °C and two orders of magnitude higher than that of pure epoxy at 150 °C. These results can give some advice to design formulations for practical applications in power apparatus.  相似文献   

5.
Nanofiber‐like mesoporous γ‐Al2O3 was synthesized using freshly prepared boehmite sol in the presence of triblock copolymer, P123 following evaporation‐induced self‐assembly (EISA) process followed by calcinations at 400°C–1000°C. The samples were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X‐ray diffraction (XRD), N2 adsorption–desorption, and transmission electron microscopy (TEM). The adsorption efficiency of the samples with Congo red (CR) was studied by UV – vis spectroscopy. XRD results showed boehmite phase in the as‐prepared sample while γ‐Al2O3 phase obtained at 400°C was stable up to 900°C, a little transformation of θ‐Al2O3 resulted at 1000°C. The Brunauer‐Emmett‐Teller surface area of the 400°C‐treated sample was found to be 175.5 m2g ? 1. The TEM micrograph showed nanofiber‐like morphology of γ‐Al2O3. The 400°C‐treated sample showed about 100% CR adsorption within 60 min.  相似文献   

6.
The effect of sodium on refractory phase formation in a model Calcium Aluminate Cement–bonded refractory was investigated from 700°C to 1500°C. Sodium reacts with α‐alumina to form sodium β‐alumina (β‐Al2O3) via the intermediate NaAlO2. Formation of β‐Al2O3 disrupts the reaction path of calcia with alumina, delaying crystallization of calcium hexaluminate, CaO·6Al2O3, from 1350°C to 1500°C. β‐Al2O3 is also shown to reduce Young's modulus and delay sintering. The presence of NaAlO2 and β‐Al2O3 result in an increase in internal friction. Increased linear expansion of up to 47% is observed when 1 wt% Na is added. The expansion is shown to scale with the amount of dopant with only 0.3 wt% Na leading to an additional 31% linear expansion. On cooling, the presence of β‐Al2O3 can be demonstrated by a peak in internal friction between 1200°C and 1000°C which could be caused by Na+ ion hopping along the spinel‐like planes.  相似文献   

7.
《Ceramics International》2020,46(7):8682-8688
Digital Light Processing (DLP) is a promising approach to fabricate delicate ceramic components with high-fidelity structural features. In this work, the alumina and zirconia/alumina ceramic suspensions with low viscosity and high solid loading (40 vol%) were prepared specifically for DLP 3D printing. After debinding and sintering, the final parts were obtained without any defects. The surface morphologies and mechanical properties of alumina (Al2O3) and zirconia toughened alumina (ZTA) composites were investigated and the results showed that the final parts exhibited high relative densities and good interlayer combination at the sintering temperature of 1600 °C. Comparing with the Al2O3, the ZTA composites exhibited significantly enhanced density (99.4%), bending strength (516.7 MPa) and indentation fracture toughness (7.76 MPa m1/2).  相似文献   

8.
The solubility limit of Ca in 99.99% pure α‐Al2O3 (alumina) was measured using a wavelength dispersive spectrometer mounted on a scanning electron microscope. Al2O3 samples were equilibrated at a concentration which ensured saturation of the Al2O3 grains with Ca, and were quenched in water from 1600°C. The results were compared with those from samples which were furnace cooled from 1600°C. For the quenched samples, the Ca solubility limit was found to be 51 ± 1 ppm, which is significantly larger than the solubility limit for samples which were furnace cooled (26 ± 1 ppm).  相似文献   

9.
In this article, a mesoporous commercial alumina was calcined in the temperature range of 600°C–1200°C. The effect of several parameters such as calcination temperature, calcination time, heating rate, and calcination steps on phase transformation and crystal size was experimentally investigated. The characterization of the commercial mesoporous alumina and samples calcined at 1000°C, 1040°C, 1070°C, 1100°C, and 1200°C by single-step and multi-step calcination was performed using XRD and N2 adsorption/desorption techniques. For the commercial mesoporous alumina, TG/DTA analysis was also performed. Experimental results showed that mostly pure α-Al2O3 was obtained at 1100°C.  相似文献   

10.
Poly(acrylic acid) - alumina composites have been prepared by two different methods and thermally characterized. The glass transition temperatures (Tg) of the PAA/Al2O3 systems prepared by mixture and polymerization method were found to be 126°C and 130°C, respectively, irrespective of the alumina amounts involved in this work. The composites prepared by mixture and polymerization method have been investigated by using thermogravimetry (TGA) to follow the kinetics of anhyride formation and thermal degradation reactions. The activation energy of thermal anhydride formation and thermal degradation reaction was not found to change very much with the ratio of PAA/Al2O3 when the composites were prepared by simple mixing. For the composites prepared by the polymerization method, the activation energy of anhyride formation and thermal degradation reaction were observed to change with percentage conversion.  相似文献   

11.
《Fuel》2005,84(2-3):135-142
Heteroatom containing molecules in South Banko coal liquid (SBCL) distillate were identified with a gas chromatograph equipped with an atomic emission detector (GC-AED). Thiophenes and benzothiophenes were found to be the major sulfur compounds. Pyridines, anilines, and phenols were the major nitrogen and oxygen compounds, respectively. Reactivities of heteroatom containing species in hydrotreatment over conventional NiMoS/Al2O3, NiMoS/Al2O3–SiO2 catalysts were very different according to their cyclic structure as well as the kind of heteroatom in the species. The sulfur species were completely desulfurized over the catalysts examined in the present study by 60 min at 360 °C under initial hydrogen pressure of 5 MPa. However, hydrodenitrogenation was more difficult than hydrodesulfurization even at 450 °C. Anilines were found the most refractory ones among the nitrogen species. Hydrodeoxygenation of SBCL was also difficult in the hydrotreatment conditions examined in the present study. Dibenzofuran was the most refractory molecule among the oxygen species. A two-stage reaction configuration at 340 and 360 °C improved HDN and HDO reactivities, although the conversions were still insufficient. Increasing the acidity of the support as well as the loading of the metals on the NiMoS/Al2O3 catalysts improved very much the heteroatom reduction to achieve complete removal of nitrogen by two-stage reaction configuration at 340–360 °C and oxygen at 360 °C, respectively. The addition of H2S in the reaction atmosphere inhibited the HDN reaction but increased markedly the HDO conversion. The acidic support increased the activity in hydrotreatment through enhancing the hydrogenation activity, while H2S maintained the catalyst in a sufficiently sulfided state.  相似文献   

12.
The in-situ mullite (3Al2O3·2SiO2) foams are fabricated by 3D printing (direct ink writing (DIW)) technique and utilize waste rice husk ash (RHA). The Al2O3-SiO2 inks are prepared using an aqueous binder with α-alumina and two different silica sources, i.e., RHA extracted biogenic nano-silica (NS) and commercial silica (CS). The ink rheological features are first designed in terms of solid-to-liquid ratio and dispersant, and found that a higher amount of dispersant is needed for functionalization of NS-containing ink than CS (micro-sized) consisting of ink. Secondly, the DIW log-pile structures are fired at different temperatures (1200?1500 °C), and NS containing samples exhibited remarkable enhanced properties at a lower firing temperature than CS. At 1400 °C, alumina and RHA nano-silica entirely transformed into mullite and retained ~75 % porosity, ~8 MPa cold compressive strength, and thermal conductivity ~0.173 W/m·k that designate a simple and effective way to fabricate of mullite foamy structure.  相似文献   

13.
《Ceramics International》2016,42(7):8316-8324
The objectives of this study were to analyse the effect of inkjet 3-D printing parameters, particularly the splat overlap distance, for the fabrication of defect-free porous Al2O3 ceramic multilayers, and to correlate the resulting porosities with the mechanical properties measured using nanoindentation. An aqua-based alumina ink was used in this study to fabricate the multilayers on dense alumina substrates by inkjet printing. The as-printed specimens were dried and sintered at 1200–1500 °C. The resulting microstructural features of each specimen and their corresponding porosities were studied using FIB-SEM. Elastic modulus and hardness were determined using the spherical nanoindentation technique. Results showed that defect-free porous alumina multilayers with excellent layer to layer and layer to substrate integrity were successfully fabricated. The porosity-dependence of the elastic modulus and hardness was shown to be consistent with values predicted using empirical expressions, despite the presence of abnormal grain growth at higher temperatures.  相似文献   

14.
Depending on the recipe and the firing conditions, several non-oxides can be formed in Al2O3-C refractories. In this paper, the effect of the purity of the recipe components on the phase formation in Al2O3-C refractories with Al addition was investigated. Two test series were sintered from 800 °C to 1600 °C under air embedded in coke breeze. One test series was with brown fused alumina, and the other was with tabular alumina. At temperatures of up to 1200 °C the phase formation was the same for both recipes. For temperatures greater than 1400 °C, the impurities of brown fused alumina enhanced the formation of a polytype, while Al4O4C and Al28O21C6N6 were formed in the other series. The findings explain the occurrence of several non-oxides in disequilibrium at the chosen temperatures. The occurrence of Al4C3 was of particular interest due to its low hydration resistance. It was formed at 1200 °C.  相似文献   

15.
Resorcinol–formaldehyde/alumina composite (RF/Al2O3) gels were initially prepared using sol–gel techniques, and then dried to aerogels with supercritical fluid CO2. RF/Al2O3 aerogels were successfully converted to monolithic carbon/alumina composite (C/Al2O3) aerogels after carbonization under flowing Ar at 800 °C. The samples were characterized by Brunauer–Emmett–Teller, scanning electron microscopy, transmission electron microscope and X-ray diffraction, and the compressive strengths were also measured. The results indicated that the resulting C/Al2O3 aerogels prepared from hydrated AlCl3 possessed microstructures containing highly reticulated networks of fibers, 2–5 nm in diameter and of varying lengths, whereas the samples prepared from hydrated Al(NO3)3 were amorphous with microstructures comprised of interconnected spherical particles with diameters in the 5–15 nm range and the alumina were surrounded by amorphous carbon. The difference in microstructure resulted in each type of aerogels displaying distinct physical and mechanical properties. In particular, the as-prepared C/Al2O3 aerogels with the weblike microstructure were far more mechanically robust than those with the colloidal network. Correspondingly, the compressive strengths are 5.6 and 2.8 MPa, respectively.  相似文献   

16.
Methane decomposition reaction has been studied at three different activation temperatures (500 °C, 800 °C and 950 °C) over mesoporous alumina supported Ni–Fe and Mn–Fe based bimetallic catalysts. On co-impregnation of Ni on Fe/Al2O3 the activity of the catalyst was retained even at the high activation temperature at 950 °C and up to 180 min. The Ni promotion enhanced the reducibility of Fe/Al2O3 oxides showing higher catalytic activity with a hydrogen yield of 69%. The reactivity of bimetallic Mn and Fe over Al2O3 catalyst decreased at 800 °C and 950 °C activation temperatures. Regeneration studies revealed that the catalyst could be effectively recycled up to 9 times. The addition of O2 (1 ml, 2 ml, 4 ml) in the feed enhanced substantially CH4 conversion, the yield of hydrogen and the stability of the catalyst.  相似文献   

17.
《Powder Technology》2003,129(1-3):86-91
Dry grinding of Y2O3 and transition aluminas was conducted, using a planetary ball mill under atmospheric conditions, to synthesize yttrium aluminum garnet (Y3Al5O12, YAG). The Y2O3 reacts mechanochemically with the transition aluminas to form YAlO3 and YAG after 120 min of grinding. No reaction occurs when the Y2O3 was ground with hard corundum or soft gibbsite. Grinding the Y2O3 for 360 min with an alumina prepared by heating at 400 °C leads to a nearly amorphous phase of YAG. A well-crystallized phase of YAG was obtained easily by calcining the ground sample at 700 °C. The calcined YAG fine powders contain agglomerates that consist of nanosized primary grains.  相似文献   

18.
The catalytic activity of Ni/Al2O3, Ni/CeO2, and Ni/Al2O3-CeO2 catalysts of different compositions were investigated over biomass pyrolysis process. Catalysts were prepared using co-precipitation method with various compositions of nickel and support materials. Surface characterizations of the materials were evaluated using XRD, SEM, and BET surface area analysis with N2 adsorption isotherm. XRD analysis reveals the presence of Al2O3, CeO2, NiO, and NiAl2O4 phases in the catalysts. Paper samples used for daily writing purposes were chosen as biomass source in pyrolysis. TGA experiment was performed on biomass with and without presence of catalysts, which resulted in the decrease of initial degradation temperature of paper biomass with the influence of catalysts. In a fixed-bed reactor, untreated and catalyst mixed biomasses were pyrolyzed up to 800 °C, with a residence time of 15 min. The non-condensable gases were collected through gas bags every after 100 °C and also at 5, 10, and 15 min residence time at 800 °C, which were analyzed using TCD-GC equipment. Comparative distributions of solid, liquid and gaseous components were made. Results indicated diminished amount of tar production in presence of catalysts. 30 wt% Ni/CeO2 catalyst yielded least amount of tar product. The least amount of CO was produced over the same catalyst. According to gas analysis result, 30 wt% Ni doped alumina sample produced maximum amount of H2 production with 43.5 vol% at 800 °C (15 min residence time).  相似文献   

19.
The use of ceramics such as alumina in moving components often requires the addition of low friction materials such as graphite. A new strategy for improving toughness, strength, and thermal-shock resistance of Al2O3–graphite self-lubricating composites was proposed in this study. Alumina layers embedded between Al2O3–graphite layers were fabricated and tested after thermal shock conditions ranging between 500 °C and 800 °C maximum temperature. Retained strength and apparent fracture toughness after the tests were compared to room temperature values. Results show that compressive residual stresses generated in the outer Al2O3–graphite layers during cooling down from sintering improve the failure resistance of the materials. The introduction of heat-resistant particles (Al2O3 particles) into graphite layers combined with a layered architecture can greatly decrease the oxidation degradation of the materials below 500 °C. In addition, the retained strength and toughness in the layered architectures after thermal shock between 550 °C and 800 °C remains constant, thus indicating that the new-developed Al2O3/Al2O3–graphite laminated composites may be reliable candidates for self–lubricating applications also for elevated temperatures.  相似文献   

20.
《Ceramics International》2023,49(6):9231-9238
This work looked at the in-situ formation mechanism of magnesia alumina spinel in Al2O3–C refractories with magnesia addition at different firing temperatures. A comprehensive study on the mechanical properties of Al2O3–C refractories was performed in comparison to traditional analogs. The magnesia alumina spinel was in-situ formed at the firing temperature of 1150 °C in Al2O3–C refractories. With the increase of the firing temperature, the Al2O3 phase was gradually dissolved in spinel phase to form aluminum rich spinel phase, resulting in a decrease in its lattice constant due to the defects formation. The formed spinel phase was homogenously distributed and bonded well with corundum, improving the interfacial bond, load transferring capacity and crack propagation resistance. The formation of spinel phase also enhanced the sintering of the alumina matrix owing to the solid solution of alumina in the spinel. Therefore, the mechanical properties such as cold modulus of rupture and hot modulus of rupture in Al2O3–C refractories achieved a substantial enhancement compared with traditional refractories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号