首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a novel approach for rendering volumetric data including the Doppler effect of light. Similar to the acoustic Doppler effect, which is caused by relative motion between a sound emitter and an observer, light waves also experience compression or expansion when emitter and observer exhibit relative motion. We account for this by employing spectral volume rendering in an emission–absorption model, with the volumetric matter moving according to an accompanying vector field, and emitting and attenuating light at wavelengths subject to the Doppler effect. By introducing a novel piecewise linearear representation of the involved light spectra, we achieve accurate volume rendering at interactive frame rates. We compare our technique to rendering with traditional point-based spectral representation, and demonstrate its utility using a simulation of galaxy formation.  相似文献   

2.
The visualization community regards visualization literacy as a necessary skill. Yet, despite the recent increase in research into visualization literacy by the education and visualization communities, we lack practical and time-effective instruments for the widespread measurements of people's comprehension and interpretation of visual designs. We present Mini-VLAT, a brief but practical visualization literacy test. The Mini-VLAT is a 12-item short form of the 53-item Visualization Literacy Assessment Test (VLAT). The Mini-VLAT is reliable (coefficient omega = 0.72) and strongly correlates with the VLAT. Five visualization experts validated the Mini-VLAT items, yielding an average content validity ratio (CVR) of 0.6. We further validate Mini-VLAT by demonstrating a strong positive correlation between study participants' Mini-VLAT scores and their aptitude for learning an unfamiliar visualization using a Parallel Coordinate Plot test. Overall, the Mini-VLAT items showed a similar pattern of validity and reliability as the 53-item VLAT. The results show that Mini-VLAT is a psychometrically sound and practical short measure of visualization literacy.  相似文献   

3.
Understanding the behavior of deep reinforcement learning agents is a crucial requirement throughout their development. Existing work has addressed the identification of observable behavioral patterns in state sequences or analysis of isolated internal representations; however, the overall decision-making of deep-learning RL agents remains opaque. To tackle this, we present VISITOR, a visual analytics system enabling the analysis of entire state sequences, the diagnosis of singular predictions, and the comparison between agents. A sequence embedding view enables the multiscale analysis of state sequences, utilizing custom embedding techniques for a stable spatialization of the observations and internal states. We provide multiple layers: (1) a state space embedding, highlighting different groups of states inside the state-action sequences, (2) a trajectory view, emphasizing decision points, (3) a network activation mapping, visualizing the relationship between observations and network activations, (4) a transition embedding, enabling the analysis of state-to-state transitions. The embedding view is accompanied by an interactive reward view that captures the temporal development of metrics, which can be linked directly to states in the embedding. Lastly, a model list allows for the quick comparison of models across multiple metrics. Annotations can be exported to communicate results to different audiences. Our two-stage evaluation with eight experts confirms the effectiveness in identifying states of interest, comparing the quality of policies, and reasoning about the internal decision-making processes.  相似文献   

4.
During the last decades, anatomy has become an interesting topic in education—even for laymen or schoolchildren. As medical imaging techniques become increasingly sophisticated, virtual anatomical education applications have emerged. Still, anatomical models are often preferred, as they facilitate 3D localization of anatomical structures. Recently, data physicalizations (i.e., physical visualizations) have proven to be effective and engaging—sometimes, even more than their virtual counterparts. So far, medical data physicalizations involve mainly 3D printing, which is still expensive and cumbersome. We investigate alternative forms of physicalizations, which use readily available technologies (home printers) and inexpensive materials (paper or semi-transparent films) to generate crafts for anatomical edutainment. To the best of our knowledge, this is the first computer-generated crafting approach within an anatomical edutainment context. Our approach follows a cost-effective, simple, and easy-to-employ workflow, resulting in assemblable data sculptures (i.e., semi-transparent sliceforms). It primarily supports volumetric data (such as CT or MRI), but mesh data can also be imported. An octree slices the imported volume and an optimization step simplifies the slice configuration, proposing the optimal order for easy assembly. A packing algorithm places the resulting slices with their labels, annotations, and assembly instructions on a paper or transparent film of user-selected size, to be printed, assembled into a sliceform, and explored. We conducted two user studies to assess our approach, demonstrating that it is an initial positive step towards the successful creation of interactive and engaging anatomical physicalizations.  相似文献   

5.
Data visualizations have been widely used on mobile devices like smartphones for various tasks (e.g., visualizing personal health and financial data), making it convenient for people to view such data anytime and anywhere. However, others nearby can also easily peek at the visualizations, resulting in personal data disclosure. In this paper, we propose a perception-driven approach to transform mobile data visualizations into privacy-preserving ones. Specifically, based on human visual perception, we develop a masking scheme to adjust the spatial frequency and luminance contrast of colored visualizations. The resulting visualization retains its original information in close proximity but reduces visibility when viewed from a certain distance or farther away. We conducted two user studies to inform the design of our approach (N=16) and systematically evaluate its performance (N=18), respectively. The results demonstrate the effectiveness of our approach in terms of privacy preservation for mobile data visualizations.  相似文献   

6.
Euler diagrams are a popular technique to visualize set-typed data. However, creating diagrams using simple shapes remains a challenging problem for many complex, real-life datasets. To solve this, we propose RectEuler: a flexible, fully-automatic method using rectangles to create Euler-like diagrams. We use an efficient mixed-integer optimization scheme to place set labels and element representatives (e.g., text or images) in conjunction with rectangles describing the sets. By defining appropriate constraints, we adhere to well-formedness properties and aesthetic considerations. If a dataset cannot be created within a reasonable time or at all, we iteratively split the diagram into multiple components until a drawable solution is found. Redundant encoding of the set membership using dots and set lines improves the readability of the diagram. Our web tool lets users see how the layout changes throughout the optimization process and provides interactive explanations. For evaluation, we perform quantitative and qualitative analysis across different datasets and compare our method to state-of-the-art Euler diagram generation methods.  相似文献   

7.
Chart construction errors, such as truncated axes or inexpressive visual encodings, can hinder reading a visualization, or worse, imply misleading facts about the underlying data. These errors can be caught by critical readings of visualizations, but readers must have a high level of data and design literacy and must be paying close attention. To address this issue, we introduce VisuaLint: a technique for surfacing chart construction errors in situ. Inspired by the ubiquitous red wavy underline that indicates spelling mistakes, visualization elements that contain errors (e.g., axes and legends) are sketchily rendered and accompanied by a concise annotation. VisuaLint is unobtrusive — it does not interfere with reading a visualization — and its direct display establishes a close mapping between erroneous elements and the expression of error. We demonstrate five examples of VisualLint and present the results of a crowdsourced evaluation (N = 62) of its efficacy. These results contribute an empirical baseline proficiency for recognizing chart construction errors, and indicate near-universal difficulty in error identification. We find that people more reliably identify chart construction errors after being shown examples of VisuaLint, and prefer more verbose explanations for unfamiliar or less obvious flaws.  相似文献   

8.
    
Augmented Reality (AR) provides new ways for situated visualization and human-computer interaction in physical environments. Current evaluation procedures for AR applications rely primarily on questionnaires and interviews, providing qualitative means to assess usability and task solution strategies. Eye tracking extends these existing evaluation methodologies by providing indicators for visual attention to virtual and real elements in the environment. However, the analysis of viewing behavior, especially the comparison of multiple participants, is difficult to achieve in AR. Specifically, the definition of areas of interest (AOIs), which is often a prerequisite for such analysis, is cumbersome and tedious with existing approaches. To address this issue, we present a new visualization approach to define AOIs, label fixations, and investigate the resulting annotated scanpaths. Our approach utilizes automatic annotation of gaze on virtual objects and an image-based approach that also considers spatial context for the manual annotation of objects in the real world. Our results show, that with our approach, eye tracking data from AR scenes can be annotated and analyzed flexibly with respect to data aspects and annotation strategies.  相似文献   

9.
    
The distribution of visual attention can be evaluated using eye tracking, providing valuable insights into usability issues and interaction patterns. However, when used in real, augmented, and collaborative environments, new challenges arise that go beyond desktop scenarios and purely virtual environments. Toward addressing these challenges, we present a visualization technique that provides complementary views on the movement and eye tracking data recorded from multiple people in real-world environments. Our method is based on a space-time cube visualization and a linked 3D replay of recorded data. We showcase our approach with an experiment that examines how people investigate an artwork collection. The visualization provides insights into how people moved and inspected individual pictures in their spatial context over time. In contrast to existing methods, this analysis is possible for multiple participants without extensive annotation of areas of interest. Our technique was evaluated with a think-aloud experiment to investigate analysis strategies and an interview with domain experts to examine the applicability in other research fields.  相似文献   

10.
    
This paper does two main contributions to 2D time-dependent vector field topology. First, we present a technique for robust, accurate, and efficient extraction of distinguished hyperbolic trajectories (DHT), the generative structures of 2D time-dependent vector field topology. It is based on refinement of initial candidate curves. In contrast to previous approaches, it is robust because the refinement converges for reasonably close initial candidates, it is accurate due to its adaptive scheme, and it is efficient due to its high convergence speed. Second, we provide a detailed evaluation and discussion of previous approaches for the extraction of DHTs and time-dependent vector field topology in general. We demonstrate the utility of our approach using analytical flows, as well as data from computational fluid dynamics.  相似文献   

11.
We present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment and is not trivial to understand due to the number of dimensions, dependencies to past vectors, spatial/temporal correlations, and co-correlation between dimensions. It is often referred to as a black box as only inputs (images) and outputs (actions) are intelligible for humans. Using DRLViz, experts are assisted to interpret decisions using memory reduction interactions, and to investigate the role of parts of the memory when errors have been made (e.g. wrong direction). We report on DRLViz applied in the context of video games simulators (ViZDoom) for a navigation scenario with item gathering tasks. We also report on experts evaluation using DRLViz, and applicability of DRLViz to other scenarios and navigation problems beyond simulation games, as well as its contribution to black box models interpretability and explain-ability in the field of visual analytics.  相似文献   

12.
13.
14.
In many domains, multivariate event sequence data is collected focused around an entity (the case). Typically, each event has multiple attributes, for example, in healthcare a patient has events such as hospitalization, medication, and surgery. In addition to the multivariate events, also the case (a specific attribute, e.g., patient) has associated multivariate data (e.g., age, gender, weight). Current work typically only visualizes one attribute per event (label) in the event sequences. As a consequence, events can only be explored from a predefined case-centric perspective. However, to find complex relations from multiple perspectives (e.g., from different case definitions, such as doctor), users also need an event- and attribute-centric perspective. In addition, support is needed to effortlessly switch between and within perspectives. To support such a rich exploration, we present FlexEvent: an exploration and analysis method that enables investigation beyond a fixed case-centric perspective. Based on an adaptation of existing visualization techniques, such as scatterplots and juxtaposed small multiples, we enable flexible switching between different perspectives to explore the multivariate event sequence data needed to answer multi-perspective hypotheses. We evaluated FlexEvent with three domain experts in two use cases with sleep disorder and neonatal ICU data that show our method facilitates experts in exploring and analyzing real-world multivariate sequence data from different perspectives.  相似文献   

15.
Existing work on visualizing multivariate graphs is primarily concerned with representing the attributes of nodes. Even though edges are the constitutive elements of networks, there have been only few attempts to visualize attributes of edges. In this work, we focus on the critical importance of edge attributes for interpreting network visualizations and building trust in the underlying data. We propose ‘unfolding of edges’ as an interactive approach to integrate multivariate edge attributes dynamically into existing node-link diagrams. Unfolding edges is an in-situ approach that gradually transforms basic links into detailed representations of the associated edge attributes. This approach extends focus+context, semantic zoom, and animated transitions for network visualizations to accommodate edge details on-demand without cluttering the overall graph layout. We explore the design space for the unfolding of edges, which covers aspects of making space for the unfolding, of actually representing the edge context, and of navigating between edges. To demonstrate the utility of our approach, we present two case studies in the context of historical network analysis and computational social science. For these, web-based prototypes were implemented based on which we conducted interviews with domain experts. The experts' feedback suggests that the proposed unfolding of edges is a useful tool for exploring rich edge information of multivariate graphs.  相似文献   

16.
    
Retrieving charts from a large corpus is a fundamental task that can benefit numerous applications such as visualization recommendations. The retrieved results are expected to conform to both explicit visual attributes (e.g., chart type, colormap) and implicit user intents (e.g., design style, context information) that vary upon application scenarios. However, existing example-based chart retrieval methods are built upon non-decoupled and low-level visual features that are hard to interpret, while definition-based ones are constrained to pre-defined attributes that are hard to extend. In this work, we propose a new framework, namely WYTIWYR (What-You-Think-Is-What-You-Retrieve), that integrates user intents into the chart retrieval process. The framework consists of two stages: first, the Annotation stage disentangles the visual attributes within the query chart; and second, the Retrieval stage embeds the user's intent with customized text prompt as well as bitmap query chart, to recall targeted retrieval result. We develop aprototype WYTIWYR system leveraging a contrastive language-image pre-training (CLIP) model to achieve zero-shot classification as well as multi-modal input encoding, and test the prototype on a large corpus with charts crawled from the Internet. Quantitative experiments, case studies, and qualitative interviews are conducted. The results demonstrate the usability and effectiveness of our proposed framework.  相似文献   

17.
Analyzing stenoses of the internal carotids – local constrictions of the artery – is a critical clinical task in cardiovascular disease treatment and prevention. For this purpose, we propose a self-contained pipeline for the visual analysis of carotid artery geometries. The only inputs are computed tomography angiography (CTA) scans, which are already recorded in clinical routine. We show how integrated model extraction and visualization can help to efficiently detect stenoses and we provide means for automatic, highly accurate stenosis degree computation. We directly connect multiple sophisticated processing stages, including a neural prediction network for lumen and plaque segmentation and automatic global diameter computation. We enable interactive and retrospective user control over the processing stages. Our aims are to increase user trust by making the underlying data validatable on the fly, to decrease adoption costs by minimizing external dependencies, and to optimize scalability by streamlining the data processing. We use interactive visualizations for data inspection and adaption to guide the user through the processing stages. The framework was developed and evaluated in close collaboration with radiologists and neurologists. It has been used to extract and analyze over 100 carotid bifurcation geometries and is built with a modular architecture, available as an extendable open-source platform.  相似文献   

18.
    
Problem-solving dynamics refers to the process of solving a series of problems over time, from which a student's cognitive skills and non-cognitive traits and behaviors can be inferred. For example, we can derive a student's learning curve (an indicator of cognitive skill) from the changes in the difficulty level of problems solved, or derive a student's self-regulation patterns (an example of non-cognitive traits and behaviors) based on the problem-solving frequency over time. Few studies provide an integrated overview of both aspects by unfolding the problem-solving process. In this paper, we present a visual analytics system named SeqDynamics that evaluates students ‘problem-solving dynamics from both cognitive and non-cognitive perspectives. The system visualizes the chronological sequence of learners’ problem-solving behavior through a set of novel visual designs and coordinated contextual views, enabling users to compare and evaluate problem-solving dynamics on multiple scales. We present three scenarios to demonstrate the usefulness of SeqDynamics on a real-world dataset which consists of thousands of problem-solving traces. We also conduct five expert interviews to show that SeqDynamics enhances domain experts’ understanding of learning behavior sequences and assists them in completing evaluation tasks efficiently.  相似文献   

19.
Dental healthcare increasingly employs computer-aided design software, to provide patients with high-quality dental prosthetic devices. In modern dental reconstruction, dental technicians address the unique anatomy of each patient individually, by capturing the dental impression and measuring the mandibular movements. Subsequently, dental technicians design a custom denture that fits the patient from a functional point of view. The current Workflow does not include a systematic analysis of aesthetics, and dental technicians rely only on an aesthetically pleasing mock-up that they discuss with the patient, and on their experience. Therefore, the final denture aesthetics remain unknown until the dental technicians incorporate the denture into the patient. In this Work, we present a solution that integrates aesthetics analysis into the functional Workflow of dental technicians. Our solution uses a video recording of the patient, to preview the denture design at any stage of the denture design process. We present a teeth pose estimation technique that enables denture preview and a set of linked visualizations that support dental technicians in the aesthetic design of dentures. These visualizations assist dental technicians in choosing the most aesthetically fitting preset from a library of dentures, in identifying the suitable denture size, and in adjusting the denture position. We demonstrate the utility of our system with four use cases, explored by a dental technician. Also, we performed a quantitative evaluation for teeth pose estimation, and an informal usability evaluation, with positive outcomes concerning the integration of aesthetics analysis into the functional Workflow.  相似文献   

20.
Modern visualization software and programming libraries have made data visualization construction easier for everyone. However, the extent of accessibility design they support for blind and low-vision people is relatively unknown. It is also unclear how they can improve chart content accessibility beyond conventional alternative text and data tables. To address these issues, we examined the current accessibility features in popular visualization tools, revealing limited support for the standard accessibility methods and scarce support for chart content exploration. Next, we investigate two promising accessibility approaches that provide off-the-shelf solutions for chart content accessibility: structured navigation and conversational interaction. We present a comparative evaluation study and discuss what to consider when incorporating them into visualization tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号