首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a novel retargeting algorithm that transfers the musculature of a reference anatomical model to new bodies with different sizes, body proportions, muscle capability, and joint range of motion while preserving the functionality of the original musculature as closely as possible. The geometric configuration and physiological parameters of musculotendon units are estimated and optimized to adapt to new bodies. The range of motion around joints is estimated from a motion capture dataset and edited further for individual models. The retargeted model is simulation‐ready, so we can physically simulate muscle‐actuated motor skills with the model. Our system is capable of generating a wide variety of anatomical bodies that can be simulated to walk, run, jump and dance while maintaining balance under gravity. We will also demonstrate the construction of individualized musculoskeletal models from bi‐planar X‐ray images and medical examination.  相似文献   

2.
The cloth simulation systems often suffer from excessive extension on the polygonal mesh, so an additional strain‐limiting process is typically used as a remedy in the simulation pipeline. A cloth model can be discretized as either a quadrilateral mesh or a triangular mesh, and their strains are measured differently. The edge‐based strain‐limiting method for a quadrilateral mesh creates anisotropic behaviour by nature, as discretization usually aligns the edges along the warp and weft directions. We improve this anisotropic technique by replacing the traditionally used equality constraints with inequality ones in the mathematical optimization, and achieve faster convergence. For a triangular mesh, the state‐of‐the‐art technique measures and constrains the strains along the two principal (and constantly changing) directions in a triangle, resulting in an isotropic behaviour which prohibits shearing. Based on the framework of inequality‐constrained optimization, we propose a warp and weft strain‐limiting formulation. This anisotropic model is more appropriate for textile materials that do not exhibit isotropic strain behaviour.  相似文献   

3.
Inflatable Models   总被引:1,自引:0,他引:1       下载免费PDF全文
A physically-based model is presented for the simulation of a new type of deformable objects-inflatable objects, such as shaped balloons, which consist of pressurized air enclosed by an elastic surface. These objects have properties inherent in both 3D and 2D elastic bodies, as they demonstrate the behaviour of 3D shapes using 2D formulations. As there is no internal structure in them, their behaviour is substantially different from the behaviour of deformable solid objects. We use one of the few available models for deformable surfaces, and enhance it to include the forces of internal and external pressure. These pressure forces may also incorporate buoyancy forces, to allow objects filled with a low density gas to float in denser media. The obtained models demonstrate rich dynamic behaviour, such as bouncing, floating, deflation and inflation.  相似文献   

4.
In physics-based liquid simulation for graphics applications, pressure projection consumes a significant amount of computational time and is frequently the bottleneck of the computational efficiency. How to rapidly apply the pressure projection and at the same time how to accurately capture the liquid geometry are always among the most popular topics in the current research trend in liquid simulations. In this paper, we incorporate an artificial neural network into the simulation pipeline for handling the tricky projection step for liquid animation. Compared with the previous neural-network-based works for gas flows, this paper advocates new advances in the composition of representative features as well as the loss functions in order to facilitate fluid simulation with free-surface boundary. Specifically, we choose both the velocity and the level-set function as the additional representation of the fluid states, which allows not only the motion but also the boundary position to be considered in the neural network solver. Meanwhile, we use the divergence error in the loss function to further emulate the lifelike behaviours of liquid. With these arrangements, our method could greatly accelerate the pressure projection step in liquid simulation, while maintaining fairly convincing visual results. Additionally, our neutral network performs well when being applied to new scene synthesis even with varied boundaries or scales.  相似文献   

5.
We propose a novel monolithic pure SPH formulation to simulate fluids strongly coupled with rigid bodies. This includes fluid incompressibility, fluid–rigid interface handling and rigid–rigid contact handling with a viable implicit particle-based dry friction formulation. The resulting global system is solved using a new accelerated solver implementation that outperforms existing fluid and coupled rigid–fluid simulation approaches. We compare results of our simulation method to analytical solutions, show performance evaluations of our solver and present a variety of new and challenging simulation scenarios.  相似文献   

6.
There are two major approaches for real-time object simulation namely, the geometry (non-physically) based and the physically based approaches. Geometry based approaches such as free-form deformation (FFD) employ purely geometric techniques to model deformation. Physically based approaches usually adopt mass-spring system, finite element method (FEM) or boundary element method (BEM) for simulation. The mass-spring system is simple and only gives a coarse estimation of object deformation. Recently, FEM and BEM have been extensively used in object simulation because of the demand for more realistic simulation. However, a major drawback of FEM and BEM is their difficulty to achieve real-time deformation. In this article, we compare two different physically based approaches, FEM and BEM, according to their accuracy and computational complexity. Several experiments were conducted to compare the time required for the pre-computation process and the deformation process. In addition, the BEM with linear boundary elements is implemented and tested. At the current state of investigation, for the meshes with triangular elements, BEM with linear boundary elements is significantly faster than BEM with constant boundary elements under most of the circumstances. With the band matrix of FEM, the pre-computation process is faster than the BEM for a model with small mesh size. However if the mesh size of the model is large, the pre-computation process of BEM with linear boundary elements is the fastest.  相似文献   

7.
Inspired by frictional behaviour that is observed when sliding matchsticks against one another at different angles, we propose a phenomenological anisotropic friction model for structured surfaces. Our model interpolates isotropic and anisotropic elliptical Coulomb friction parameters for a pair of surfaces with perpendicular and parallel structure directions (e.g. the wood grain direction). We view our model as a special case of an abstract friction model that produces a cone based on state information, specifically the relationship between structure directions. We show how our model can be integrated into LCP and NCP-based simulators using different solvers with both explicit and fully implicit time-integration. The focus of our work is on symmetric friction cones, and we therefore demonstrate a variety of simulation scenarios where the friction structure directions play an important part in the resulting motions. Consequently, authoring of friction using our model is intuitive and we demonstrate that our model is compatible with standard authoring practices, such as texture mapping.  相似文献   

8.
We propose an octree‐based presentation of vortex particles to simulate smoke and gaseous phenomena in a physical way. Vortex particle method prevails over grid‐based method in terms of less numerical dissipation and more detail features, but it suffers from heavy computational overhead due to per‐particle Biot–Savart integration over the entire simulation space. To alleviate this problem, we employ an octree background grid to separate the vortex particles into individual groups. Particles in groups are aggregated as a single super vortex particle to reduce computational cost. The proposed method produces comparable visual result as previous methods with much less computational overhead. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Urban thermography is a non-invasive measurement technique commonly used for building diagnosis and energy efficiency evaluation. The physical interpretation of thermal images is a challenging task because they do not necessarily depict the real temperature of the surfaces, but one estimated from the measured incoming radiation. In this sense, the computational rendering of a thermal image can be useful to understand the results captured in a measurement campaign. The computer graphics community has proposed techniques for light rendering that are used for its thermal counterpart. In this work, a physically based simulation methodology based on a combination of the finite element method (FEM) and ray tracing is presented. The proposed methods were tested using a highly detailed urban geometry. Directional emissivity models, glossy reflectivity functions and importance sampling were used to render thermal images. The simulation results were compared with a set of measured thermograms, showing good agreement between them.  相似文献   

10.
A major issue in smoothed particle hydrodynamics (SPH) approaches is the numerical dissipation during the projection process, especially under coarse discretizations. High‐frequency details, such as turbulence and vortices, are smoothed out, leading to unrealistic results. To address this issue, we introduce a vorticity refinement (VR) solver for SPH fluids with negligible computational overhead. In this method, the numerical dissipation of the vorticity field is recovered by the difference between the theoretical and the actual vorticity, so as to enhance turbulence details. Instead of solving the Biot‐Savart integrals, a stream function, which is easier and more efficient to solve, is used to relate the vorticity field to the velocity field. We obtain turbulence effects of different intensity levels by changing an adjustable parameter. Since the vorticity field is enhanced according to the curl field, our method can not only amplify existing vortices, but also capture additional turbulence. Our VR solver is straightforward to implement and can be easily integrated into existing SPH methods.  相似文献   

11.
We propose a deformable body model in order to simulate the dynamic behaviour of human organs in surgical simulators. It is based on a spring surface mesh, fitted with a virtual rigid component which does not interact with the environment and provides the structure with a rigid behaviour. This specific structure is intended to be physically based and interactive but also to support dynamic alteration such as incisions, under several constraints: mechanical realism, robustness and real time. Moreover, interactions are taken into account by a 4D collision detection algorithm between polygonal objects, and reponse is computed analytically. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Realistic behavior of deformable objects is essential for many applications such as simulation for surgical training. Existing techniques of deformable modeling for real time simulation have either used approximate methods that are not physically accurate or linear methods that do not produce reasonable global behavior. Nonlinear finite element methods (FEM) are globally accurate, but conventional FEM is not real time. In this paper, we apply nonlinear FEM using mass lumping to produce a diagonal mass matrix that allows real time computation. Adaptive meshing is necessary to provide sufficient detail where required while minimizing unnecessary computation. We propose a scheme for mesh adaptation based on an extension of the progressive mesh concept, which we call dynamic progressive meshes.  相似文献   

13.
We develop and present a new approach to modelling the characteristics of human hair, considering not only its structure, but also the control of its motion and a technique for rendering it in a realistic form. The approach includes a system for interactively defining the global positioning of the strands of hair on the head. Special attention is paid to the self shadowing of the hair. A mass/spring/hinge system is used to control a single strand's position and orientation. We demonstrate that this approach results in a believable rendition of the hair and its dynamics.  相似文献   

14.
In this paper, we present a novel direct solver for the efficient simulation of stiff, inextensible elastic rods within the position‐based dynamics (PBD) framework. It is based on the XPBD algorithm, which extends PBD to simulate elastic objects with physically meaningful material parameters. XPBD approximates an implicit Euler integration and solves the system of non‐linear equations using a non‐linear Gauss–Seidel solver. However, this solver requires many iterations to converge for complex models and if convergence is not reached, the material becomes too soft. In contrast, we use Newton iterations in combination with our direct solver to solve the non‐linear equations which significantly improves convergence by solving all constraints of an acyclic structure (tree), simultaneously. Our solver only requires a few Newton iterations to achieve high stiffness and inextensibility. We model inextensible rods and trees using rigid segments connected by constraints. Bending and twisting constraints are derived from the well‐established Cosserat model. The high performance of our solver is demonstrated in highly realistic simulations of rods consisting of multiple 10 000 segments. In summary, our method allows the efficient simulation of stiff rods in the PBD framework with a speedup of two orders of magnitude compared to the original XPBD approach.  相似文献   

15.
Rig‐space physics a finite element method(FEM) based simulation technique that aims at adding secondary motion on a character while maintaining seamless cooperation with traditional animation pipelines. We enhance the rig‐space physics by introducing several techniques, including general field interaction, proportional‐derivative control, and improved material control. This allows an animator to perform various interferences to the simulation process and create more abundant animation effects. Moreover, we also improve the numerical stability of the simulation algorithm by prepending a conjugate gradient procedure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Soft object modelling is crucial in providing realistic simulation of many surgical procedures. High accuracy is achievable using the Finite Element Method (FEM), but significant computational power is required. We are interested in providing Web‐based surgical training simulation where such computational power is not available, but in return lower accuracy is often sufficient. A useful alternative to FEM is the 3D ChainMail algorithm that models elements linked in a regular, rectangular mesh, mimicking the behaviour of chainmail armour. An important aspect is the ability to make topology changes for example by cutting — an aspect that FEM finds difficult. Our contribution is to extend the 3D ChainMail technique to arbitrary grids in 2D and 3D. This extends the range of applications that can be addressed by the ChainMail approach, to include surfaces and volumes defined on triangular and tetrahedral meshes. We have successfully deployed the algorithm in a Web‐based environment, using VRML and Java linked through the External Authoring Interface. ACM CSS: I.3.5 Computer graphics: Computional Geometry and Object Modelling, I.3.2 Computer Graphics: Graphics Systems, J.3 Life and Medical Sciences  相似文献   

17.
We propose to use nonlinear shape functions represented as neural networks in numerical coarsening to achieve generalization capability as well as good accuracy. To overcome the challenge of generalization to different simulation scenarios, especially nonlinear materials under large deformations, our key idea is to replace the linear mapping between coarse and fine meshes adopted in previous works with a nonlinear one represented by neural networks. However, directly applying an end-to-end neural representation leads to poor performance due to over-huge parameter space as well as failing to capture some intrinsic geometry properties of shape functions. Our solution is to embed geometry constraints as the prior knowledge in learning, which greatly improves training efficiency and inference robustness. With the trained neural shape functions, we can easily adopt numerical coarsening in the simulation of various hyperelastic models without any other preprocessing step required. The experiment results demonstrate the efficiency and generalization capability of our method over previous works.  相似文献   

18.
The smoothed finite element methods (S-FEM) are a family of methods formulated through carefully designed combinations of the standard FEM and some of the techniques from the meshfree methods. Studies have proven that S-FEM models behave softer than the FEM counterparts using the same mesh structure, often produce more accurate solutions, higher convergence rates, and much less sensitivity to mesh distortion. They work well with triangular or tetrahedral mesh that can be automatically generated, and hence are ideal for automated computations and adaptive analyses. Some S-FEM models can also produce upper bound solution for force driving problems, which is an excellent unique complementary feature to FEM. Because of these attractive properties, S-FEM has been applied to numerous problems in the disciplines of material mechanics, biomechanics, fracture mechanics, plates and shells, dynamics, acoustics, heat transfer and fluid–structure interactions. This paper reviews the developments and applications of the S-FEM in the past ten years. We hope this review can shed light on further theoretical development of S-FEM and more complex practical applications in future.  相似文献   

19.
We propose and test a new class of two-level nonlinear additive Schwarz preconditioned inexact Newton algorithms (ASPIN). The two-level ASPIN combines a local nonlinear additive Schwarz preconditioner and a global linear coarse preconditioner. This approach is more attractive than the two-level method introduced in [X.-C. Cai, D.E. Keyes, L. Marcinkowski, Nonlinear additive Schwarz preconditioners and applications in computational fluid dynamics, Int. J. Numer. Methods Fluids, 40 (2002), 1463-1470], which is nonlinear on both levels. Since the coarse part of the global function evaluation requires only the solution of a linear coarse system rather than a nonlinear coarse system derived from the discretization of original partial differential equations, the overall computational cost is reduced considerably. Our parallel numerical results based on an incompressible lid-driven flow problem show that the new two-level ASPIN is quite scalable with respect to the number of processors and the fine mesh size when the coarse mesh size is fine enough, and in addition the convergence is not sensitive to the Reynolds numbers.  相似文献   

20.
In this paper, we introduce an approach to high‐level parameterisation of captured mesh sequences of actor performance for real‐time interactive animation control. High‐level parametric control is achieved by non‐linear blending between multiple mesh sequences exhibiting variation in a particular movement. For example, walking speed is parameterised by blending fast and slow walk sequences. A hybrid non‐linear mesh sequence blending approach is introduced to approximate the natural deformation of non‐linear interpolation techniques whilst maintaining the real‐time performance of linear mesh blending. Quantitative results show that the hybrid approach gives an accurate real‐time approximation of offline non‐linear deformation. An evaluation of the approach shows good performance not only for entire meshes but also with specific mesh areas. Results are presented for single and multi‐dimensional parametric control of walking (speed/direction), jumping (height/distance) and reaching (height) from captured mesh sequences. This approach allows continuous real‐time control of high‐level parameters such as speed and direction whilst maintaining the natural surface dynamics of captured movement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号