首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Iron chromite powders were synthesized via solution combustion route using iron(III) nitrate nonahydrate and chromium(III) nitrate nonahydrate as starting materials, as well as glycine–urea, glycine–citric acid, and glycine–ethylene glycol mixtures as fuels. The effect of postheating at different temperatures on the structure, molecular, microstructure, and chromatic properties of powders and tiles colored by in-glaze powders was studied. The X-ray diffraction patterns showed that as-synthesized powders were obtained in crystalline FeCr2O4 phases moreover, postheating of the powders led to d-space shift and oxidation and formation of (Fe,Cr)2O3 solid solution phase regardless of fuel type. Phase transformation of FeCr2O4 to (Fe,Cr)2O3 solid solution was observed at 500/750°C depending on the dominant phase of as-synthesized particles. Fourier transform infrared analysis illustrated that the band positions of octahedral M–O and tetrahedral M–O bonds were shifted due to Fe cations movement from their position and lattice shrinkage by increasing of post-heating temperature. Moreover, scanning electron micrographs showed that Fe0.7Cr1.3O3 semispherical fine particles were formed from porous spongy FeCr2O4 particles due to oxidation and phase transformation during the postheating. Furthermore, chromatic properties of the samples were represented. The color properties of the pigments showed that the formation of brown pigments is provided with the phase transformation from FeCr2O4 to (Fe,Cr)2O3 at a temperature of up to 750°C. Moreover, increasing the color purity to this temperature is related to the removal of residual carbonaceous matters. The chromatic properties of the glazed tiles colored using the pigments showed that postheating between 250 and 500°C led to more brown appearance.  相似文献   

2.
Solution combustion synthesis of iron chromite was reported using iron(III) nitrate nonahydrate and chromium(III) nitrate nonahydrate as starting materials, as well as glycine, urea, citric acid, and ethylene glycol as fuels. The influence of fuel type on the structure, molecular, microstructure as well as chromatic properties of samples was investigated. The X-ray diffraction (XRD) patterns showed that unlike themodynamical prediction, glycine fuel led to strongest combustion and consequent highest XRD peak intensities and lower lattice parameters. Moreover, the change of fuel type and mixing of fuels affected XRD data. Fourier transform infrared analysis showed that the band position of Cr–O and Fe–O bonds were shifted to higher frequencies by using of fuels with weaker combustion reactions. In addition, scanning electron micrographs showed that different morphologies of FeCr2O4 particles were obtained depending on the fuel type and ratios. Energy-dispersive X-ray spectroscopy analysis of the samples showed that oxygen concentration of samples was less than that of stoichiometric ratio of FeCr2O4 due to local reducing atmosphere. Furthermore, chromatic properties of the powders showed that the pigment synthesized with glycine fuel has a better and lighter grayish brown color than the other ones and can be used as a suitable industrial candidate to create a brown color in the ceramic glaze.  相似文献   

3.
Iron carbide (Fe3C) nanoparticles have been successfully synthesized by combining low‐temperature combustion synthesis method with carbothermal reduction. A homogeneous precursor powder (Fe2O3 + C) derived from iron nitrate, glycine, and glucose mixed solution was subsequently calcined under nitrogen at 450°C–700°C for 2 h. Effects of glucose on the size and morphology of the precursors as well as the synthesized Fe3C powders were studied in details. The results showed a regular variation in the particle size and morphology of the precursors and Fe3C powders with the increasing molar ratio of glucose to iron nitrate (G/Fe). XRD analysis indicated that the initial transformation of the precursor for (G/Fe = 1) to Fe3C occurred at 500°C. Meanwhile, magnetic properties of the Fe3C have been tested by vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of Fe3C powders synthesized using different G/Fe ratios (G/Fe = 1, 2, 3) was 51.2, 37.0, and 27.1 emu/g, respectively. This made the Fe3C a promising candidate for magnetic materials.  相似文献   

4.
Sheet stacked ZnFe2O4 hollow spheres have been synthesized through a simple hydrothermal method using Zn(CH3COO)2 and Fe(NO3)3 as Zn and Fe sources, respectively. Then a series of Ag activated ZnFe2O4 composites are prepared. XRD patterns demonstrate that the as-synthesized powders are pure ZnFe2O4. FE-SEM images exhibit that the as-synthesized Ag-ZnFe2O4 particles are spherical with the diameter of 800–1000?nm. TEM images demonstrate that the as-synthesized Ag-ZnFe2O4 are hollow sphere structure. The gas sensing tests show that 0.25?wt% Ag-ZnFe2O4 has the highest responses to 100?ppm acetone vapor at 175?°C, and response time and recovery time are 17 and 148?s respectively. In addition, 0.25?wt% Ag-ZnFe2O4 has a good selectivity to acetone. Ag activated ZnFe2O4 composites exhibit excellent acetone gas sensing properties and gives potential for the detection of acetone vapor in the application of practical industrial processes and health control.  相似文献   

5.
Lanthanum strontium manganite (LSM) powders of composition La0.7Sr0.3MnO3 are good candidates for cathode application in solid oxide fuel cells. This paper reports the synthesis of LSM powders from nitrate precursors by the combustion method, using two different propellants (urea and glycine) and varying the propellant/nitrate ratio. Thermogravimetric analysis (TGA) revealed two or three decomposition stages of the as-synthesized samples, with complete burn out of organics at about 850–900 °C. X-ray diffraction (XRD) patterns showed formation of only LSM phase for the sample synthesized with excess of urea, whereas SrCO3 and MnCO3 phases were also found for the samples prepared from glycine. The powder is better crystallized when a homogeneous gel is formed before burning. The crystallite size calculated using the Scherrer equation is in the range of 15–20 nm. Scanning electron microscopy (SEM) revealed the presence of agglomerates, formed by fine particles of different shapes.  相似文献   

6.
Spinel-type LiMn2O4 powders having submicron, narrow particle-size distribution and excellent phasepure particles have been synthesized at low temperatures from metal acetate aqueous solution containing glycine as a chelating agent by a sol-gel method. The dependence of the physicochemical properties and cycling characteristics of the spinel LiMn2O4 powders on the various calcination temperatures has been extensively studied. It was found that the physicochemical properties of the LiMn2O4 powders could be controlled by simply varying the calcination temperature. Glycine-assisted LiMn2O4 powders have shown excellent rechargeability and delivered discharge capacity of 119 mAh/g for more than 150th cycles in Li/polymer electrolyte/liMn2O4 cells.  相似文献   

7.
FeCr2O4:Zn,Al pigment powders were prepared via a solution combustion synthesis method. Effects of Zn and Al dopants and less/extra Fe content on the structure, molecular bonds, and optical properties of powders were studied. Results showed that addition of dopants as well as extra/less content of Fe led to weaker combustion and consequently lower X-ray diffraction peak intensities, lattice parameters, and differential thermal analysis peak intensities. Moreover, Fourier transform infrared analysis illustrated that the band position of Cr–O and Fe–O bonds were shifted to higher frequencies with moving away from stoichiometry. In addition, scanning electron micrographs showed that in all samples, porous spongy microstructures were formed with highly flake-like agglomerated particles. Furthermore, there was a significant difference between the powder samples and the tiles colored with in glaze powders due to the partial dissolution of pigments in contact with the molten glaze of tiles. In comparison to the tile colored with the stoichiometric FeCr2O4 pigments without dopants, the color difference (ΔE) in the tiles colored by the iron chromite pigments doped with Zn and Al dopants and less/extra Fe content reached the high values as large as ΔE = 36.19. The solar reflectance values (Rs) in near-infrared region were above 50% in all samples. Near 80% Rs in the tile colored by the iron chromite pigment doped with 3 mol% Zn and the yellowish brown appearance (L* = 43.44, a* = 6.77, b* = 18.38, c* = 19.59, h = 69.79) showed that the sample was a good candidate for cool building materials such as roof tiles.  相似文献   

8.
燕萍  胡筱敏  孙旭东 《化工学报》2011,62(1):262-268
用甘氨酸作还原剂、硝酸盐作氧化剂,采用溶胶-凝胶与自蔓延低温燃烧相结合的方法制备了超细Ce0.8Sm0.2O1.9 (SDC)固溶体,对所合成的粉体分别采用XRD、SEM和BET法进行了表征。结果表明,600℃焙烧产物是具有较高相纯度的单一立方相萤石型结构固溶体,根据XRD估算晶粒度为13~30 nm。甘氨酸与金属硝酸盐(G/N)摩尔比对粉体的微观形貌和烧结性能有很大影响, 当G/N相似文献   

9.
The aim of this work was to investigate the influence of precipitation parameters on the morphology of obtained thulium oxide powders. Tm2O3 precursor powders were synthesized by precipitation method using 0.1–0.25M water solutions of thulium nitrate and 1.5M ammonium hydrogen carbonate water solution as a precipitation agent. The processes were conducted at different temperatures (25–50°C). The result showed that the morphology of the obtained thulium oxide (Tm2O3) powders depends both on the molar concentration of thulium nitrate and the temperature of precipitation. Small, round, loosely agglomerated Tm2O3 nanoparticles were obtained after air calcination of precursor precipitated at room temperature with the use of 0.1M thulium nitrate solution.  相似文献   

10.
《应用陶瓷进展》2013,112(1):54-57
Abstract

Abstract

Materials with A2B2O7 (pyrochlore) structure have received significant attention for their applications as new protonic conductors and materials used in electronic devices. One of the unique synthesis routes for La2Zr2O7 (pyrochlore) powders is the glycine–nitrate combustion method, which shows superior properties of the synthesised powder using glycine as a complexing agent. The Sr doped La2Zr2O7 powders in pure pyrochlore structure were produced using this approach. Selected characteristics of the synthesised powders, such as crystal structure, lattice parameters, crystallite size, the vibrational properties, the morphology of the particles, along with the specific surface area and particle size, have been investigated. The dependence of some properties on annealing temperatures of the powders has been studied.  相似文献   

11.
Uniformly dispersed yttrium aluminum garnet (Y3Al5O12, YAG) ultrafine powders were synthesized by co-precipitating a mixed solution of aluminum and yttrium nitrates with ammonium hydrogen carbonate in the presence of sodium dodecyl sulfate (SDS) as dispersing agent. The primary purpose of introducing SDS was to protect YAG particles from agglomeration. The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by thermogravimetry/differential scanning calorimetry, X-ray diffraction, infrared spectra and scanning electron microscopy. The results showed that phase-pure YAG powders could be achieved by calcination of the precursor at 900 °C for 2 h. Uniformly dispersed YAG powders with a particle size of approximately 90-100 nm were obtained with optimum molar ratio of Al3+ to SDS at 2. And excessive SDS restrained good dispersion of the YAG powders. The dispersion mechanism of SDS in the preparation process was discussed.  相似文献   

12.
The preparation of Cu-coated Al2O3 composite powders by electroless plating   总被引:1,自引:0,他引:1  
Cu-coated Al2O3 composite powders were synthesized by using the electroless plating method. The influence of the components proportion and the pH value of the plating solution on the Cu layer were analyzed with XRD and SEM. The results showed that the proportion of the plating solution components plays an important role for synthesizing the Al2O3/Cu composite powders. The content of copper in the composite powders could be effectively controlled by adjusting the content of copper sulfate and formaldehyde in the plating solution. Furthermore, the pretreatment of the Al2O3 powders is also a key factor to form a uniform Cu layer coating Al2O3 particles. The optimum technical parameters for producing Al2O3/Cu composite powders with uniform Cu coat were obtained.  相似文献   

13.
《Ceramics International》2017,43(10):7448-7453
Porous magnetite (Fe3O4) powders were synthesized by solution combustion method using the glycine and urea at different fuel to oxidant ratios (ϕ). The combustion behavior depended on the fuel type as characterized by thermal analysis. The structure and phase evolution investigated by X-ray diffraction method showed nearly single phase Fe3O4 powders which were achieved only by using the glycine fuel at ϕ=1. The specific surface area and porous structures of the as-combusted Fe3O4 powders were characterized by N2 adsorption-desorption isotherms and scanning electron microscopy, respectively. The surface area using the glycine fuel (62.6 m2/g) was higher than that of urea fuel (42.5 m2/g), due to different combustion reactions. Magnetic properties of the as-combusted powders were studied by vibration sample magnetometry which exhibited the highest saturation magnetization of 74 emu/g using the glycine fuel at ϕ=1 on account of its high purity and large crystallite size.  相似文献   

14.
In the present study, the in-situ synthesized mullite has been prepared successfully by mixing kaolinite with alumina and aluminum nitrate nonahydrate (ANN) powders through high energy milling followed by spark plasma sintering (SPS). Using a high-energy ball-mill, the stoichiometric compositions of the starting powders, considering their final transformation to Al2O3 and SiO2, have been mixed. The SPS process has been performed at 1400 and 1375?°C for the specimens containing Al2O3 and ANN, respectively. XRD patterns of the milled powders after 30?h showed the formation of quartz from kaolinite for both starting batches. The displacement-temperature-time (DTT) curves and the corresponded vacuum changes indicated the dehydration and phase transformation of ANN and kaolinite at different stages of the sintering process. The XRD patterns of the sintered samples revealed the formation of mullite alongside un-reacted Al2O3 and crystobalite for the batches containing Al2O3 and ANN, respectively. The results of the physical and mechanical properties tests showed higher amounts of bending strength (397?±?18?MPa), Vickers hardness (16.32?±?0.21?GPa) and fracture toughness (3.81?±?0.24?MPa?m?1/2) alongside a lower porosity (0.070?±?0.02%) for the prepared sample containing Al2O3, than those of the sample containing ANN.  相似文献   

15.
The possibility of synthesizing different crystalline modifications of alumina Al2O3 by combustion reactions of a mixture of aluminum nitrate with glycine has been analyzed. Aggregated powders of γ-Al2O3 that do not transform into the corundum structure after annealing at a temperature of 1000°C have been prepared. The influence of the synthesis conditions on the specific surface area, bulk density, porosity, and morphology of alumina particles has been investigated.  相似文献   

16.
《Ceramics International》2019,45(15):18255-18264
Thermal Barrier Coatings (TBCs) play a significant role in improving the efficiency of gas turbines by increasing their operating temperatures. The TBCs in advanced turbine engines are prone to silicate particles attack while operating at high temperatures. The silicate particles impinge on the hot TBC surfaces and melt to form calcia-magnesia-aluminosilicate (CMAS) glass deposits leading to coating premature failure. Fine powder of CMAS with the composition matching the desert sand has been synthesized by solution combustion technique. The present study also demonstrates the preparation of flowable yttria-stabilized zirconia (YSZ) and cluster paired YSZ (YSZ-Ln2O3, Ln = Dy and Gd) powders by single-step solution combustion technique. The as-synthesized powders have been plasma sprayed and the interaction of the free standing TBCs with CMAS at high-temperatures (1200 °C, 1270 °C and 1340 °C for 24 h) has been investigated. X-ray diffraction analysis of CMAS attacked TBCs revealed a reduction in phase transformation of tetragonal to monoclinic zirconia for YSZ-Ln2O3 (m-ZrO2: 44%) coatings than YSZ (m-ZrO2: 67%). The field emission scanning electron microscopic images show improved CMAS resistance for YSZ-Ln2O3 coatings than YSZ coatings.  相似文献   

17.
《Ceramics International》2017,43(4):3797-3803
High surface area cobalt ferrite (CoFe2O4) powders were synthesized by solution combustion method. The dependence of the adiabatic temperature and the released gases during combustion reaction on the fuel content and cobalt precursor type, cobalt nitrate and cobalt acetate, was thermodynamically calculated. Thermal analysis, infrared spectroscopy, X-ray diffractometry, nitrogen adsorption–desorption, electron microscopy and vibrating sample magnetometer were used for investigation of the phase evolution, surface areas, morphology and magnetic properties of the synthesized CoFe2O4 powders. The specific surface area decreased from 285.4 to 35.7 m2/g with increasing of fuel to oxidant molar ratio, ϕ, from 0.5 to 1.25 for the cobalt nitrate precursor, while the maximum surface area of 182.1 m2/g was attained at ϕ=1 for the cobalt acetate precursor. The synthesized CoFe2O4 powders from the cobalt nitrate precursor exhibited the higher saturation magnetization and coercivity on account of the higher purity and crystallinity.  相似文献   

18.
Pure-phase and well-crystallized spinel LiMn2O4 powders as cathode materials for lithium-ion batteries were successfully synthesized by a new simple microwave-assisted rheological phase method, which was a timesaving and efficient method. The physical properties of the as-synthesized samples compared with the pristine LiMn2O4 obtained from the rheological phase method were investigated by thermogravimetry analysis (TGA), X-ray diffraction (XRD) and scanning electronic microscope (SEM). The as-prepared powders were used as positive materials for lithium-ion battery, whose charge/discharge properties and cycle performance were examined in detail. The powders resulting from the microwave-assisted rheological phase method were pure, spinel structure LiMn2O4 particles of regular shapes with distribution uniformly, and exhibited promising electrochemical properties for battery. Furthermore, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to characterize the reactions of Li-ion insertion into and extraction from LiMn2O4 electrode.  相似文献   

19.
AlN powders were synthesized by carbothermal reduction of combustion synthesis precursors. Water-soluble organics and carbon black were used as carbon sources. The effects of carbon on the synthesis of AlN powders were studied. Results showed that AlN powders were synthesized directly from γ-Al2O3 without γ-Al2O3 to α-Al2O3 phase transition when water-soluble organics were used as carbon sources, and the nitridation of the precursors could be completed at 1400 °C. However, AlN powders were synthesized from the nitridation of α-Al2O3 when carbon black was used as carbon source, and the reaction temperature for a complete conversion increased to 1500 °C. The particles of AlN powders synthesized with water-soluble organics was smaller than the particles of AlN powders synthesized with carbon black and their particle size distribution was sharper. The specific surface area of synthesized AlN powders increased with the increase of carbon content in the precursors.  相似文献   

20.
Gas sensors made of flame-synthesized Zn-doped γ-Fe2O3 nanoparticles were found to have high sensitivity and high aging resistance. Zinc-doped γ-Fe2O3 nanoparticles and microparticles were synthesized by flame spray pyrolysis (FSP). Gas sensors were fabricated with as-synthesized particles, and with particles that had been annealed. The sensors’ response to acetone vapor and H2 was measured as fabricated, and measured again after the sensors were aged for three days. The sensors made from as-synthesized particles showed a gas sensing sensitivity 20 times higher than the literature value. However, sensors made of microparticles lost their sensing ability after three days of aging; sensors made of nanoparticles retained their gas sensing capability after aging. Sensors made of annealed particles did not have significant gas sensing capabilities. Analysis using the William and Hall method showed that the microstrains decreased significantly in both H2/O2 and H2/Air flame synthesized particles after annealing. The results showed that sensors made of flame-synthesized particles have much higher sensitivity than sensors made of particles previously reported. Especially, sensors made of flame-synthesized nanoparticles are resistant towards aging. This aging resistance may be attributed to the particles’ ability to retain their microstrains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号