首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
High-dense SiC-(TixZr1?x)B2 composite ceramics were fabricated by in-situ synthesis of (TixZr1?x)B2 solid solution using solid-state spark plasma sintering (SPS). 64 vol% SiC, 20 vol% ZrB2, 15 vol% TiB2, and 1 vol% graphite powders are chosen as raw materials. The composite ceramics has the relative density of 99.97 %, the Vickers hardness of 24.71 GPa, the flexure strength of 435 MPa and the fracture toughness of 8.05 MPa ? m1/2. Compared with the single-phase SiC ceramics and SiC-TiB2 composite ceramics, the fracture toughness of SiC-(TixZr1?x)B2 composite ceramics increased by 242.6 % and 53.6 %, respectively. A shell-core structure is found in the SiC-(TixZr1?x)B2 composite ceramics, in which (TixZr1?x)B2 solid solution is the core and fine SiC grain is the shell. The results show that the toughening effect of solid-state sintered SiC-(TixZr1?x)B2 composite ceramics is attributed to the shell-core structure.  相似文献   

2.
A new high-entropy diboride (Hf0.25Zr0.25Ta0.25Sc0.25)B2 was designed to investigate the effect of introducing rare-earth metal diboride ScB2 into high-entropy diborides on its structure and properties. The local mixing enthalpy predicts that (Hf0.25Zr0.25Ta0.25Sc0.25)B2 has high enthalpy driving force, which more easily allows the formation of single-phase AlB2-type structures between components. The experiments further demonstrate that (Hf0.25Zr0.25Ta0.25Sc0.25)B2 possesses excellent phase stability, lattice integrity and nanoscale chemical homogeneity. (Hf0.25Zr0.25Ta0.25Sc0.25)B2 showed relatively high hardness (30.7 GPa), elastic modulus (E, G, and B of 522, 231 and 233 GPa, respectively), bending strength (454 MPa), and low thermal conductivity (13.9 W·m?1·K?1). The thermal expansion of (Hf0.25Zr0.25Ta0.25Sc0.25)B2 is higher than that of ZrB2 and HfB2 due to weakened bonding (M d - B p and M dd bonding) and enhanced anharmonic effects. Thus, incorporating Sc into high-entropy diborides can tailor the properties associated with the bonding, which further expands the compositional space of high-entropy diborides.  相似文献   

3.
(Hf0.2Zr0.2Nb0.2Ta0.2Sc0.2)B2 was designed to improve the densification and solid-solution formation of high-entropy transition metal diborides, and its phase stability was predicted using the energy distribution of the local mixing enthalpy of all possible configurations. It was found that (Hf0.2Zr0.2Nb0.2Ta0.2Sc0.2)B2 are enthalpy-stabilized materials. The two-component metal diborides formed by transition metal diborides (HfB2, ZrB2, TaB2 and NbB2) with ScB2 are thermodynamically favorable, based on the mixing enthalpy. Therefore, the introduction of ScB2 in high-entropy metal diborides is beneficial to reduce the mixing Gibbs free energy during the boro/carbothermal reduction process, which enables the formation of single-phase solid solution at low temperatures. Even high-entropy metal diboride powders with large particle sizes, 25–57 µm, can achieve sintered density up to ~97% due to the introduction of ScB2 in high-entropy metal diborides, owing to its weakening action on the TM d - B p and the TM dd bonding.  相似文献   

4.
《Ceramics International》2022,48(12):17234-17245
The microstructure and mechanical properties of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high-entropy boride (HEB) were first predicted by first-principles calculations combined with virtual crystal approximation (VCA). The results verified the suitability of VCA scheme in HEB studying. Besides, single-phase (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 ceramics were successfully fabricated using boro/carbothermal reduction (BCTR) method and subsequent spark plasma sintering (SPS); furthermore, the effects of different amounts of B4C on microstructure and mechanical properties were evaluated. Due to the addition of B4C and C, all samples formed single-phase solid solutions after SPS. When the excess amount of B4C increased to 5 wt%, the sample with fine grains exhibited superior comprehensive properties with the hardness of 18.1 ± 1.0 GPa, flexural strength of 376 ± 25 MPa, and fracture toughness of 4.70 ± 0.27 MPa m1/2. Nonetheless, 10 wt% excess of B4C coarsened the grains and decreased the strength of the ceramic. Moreover, the nanohardness (34.5–36.9 GPa) and Young's modulus (519–571 GPa) values with different B4C contents just showed a slight difference and were within ranges commonly observed in high-entropy diboride ceramics.  相似文献   

5.
The influences of different contents ranging 0–15 wt% of high-entropy boride (HEB) (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 on the mechanical properties of SiC-based ceramics using Al2O3-Y2O3 sintering additives sintered by spark plasma sintering process were investigated in this study. The results showed that the introduction of 5 and 10 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 could facilitate the densification and the grain growth of SiC-based ceramics via the mechanism of liquid phase sintering. However, the grain growth of SiC-based ceramics was inhibited by the grain boundary pinning effect with the addition of 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2. The SiC-based ceramics with 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 showed the enhanced hardness (21.9±0.7 GPa) and high toughness (4.88±0.88 MPa·m1/2) as compared with high-entropy phase-free SiC-based ceramics, which exhibited a hardness of 16.6 GPa and toughness of 3.10 MPa·m1/2. The enhancement in mechanical properties was attributed to the addition of higher hardness of HEB phase, crack deflection toughening mechanism, and presence of residual stress due to the mismatch of coefficient of thermal expansion.  相似文献   

6.
The effects of the Ta substitution for Nb and the Zr substitution for Ti on the microwave dielectric properties and crystal structure of Sm(Nb1−xTax)(Ti1−yZry)O6 ceramics were investigated in this study. The Sm(Nb1−xTax)TiO6 (x = 0–1) ceramics were single phase, whereas the limit of solid solutions for the SmTa(Ti1−yZry)O6 ceramics was y = 0.4. In the case of the Sm(Nb1−xTax)TiO6 ceramics, the dielectric constant and the temperature coefficient of resonant frequency were decreased, whereas the quality factor was increased by the Ta substitution for Nb. The maximum Q · f value was obtained when the SmTaTiO6 was synthesized, and the microwave dielectric properties are, ɛr = 37.6; τf = 24.2 ppm/°C; and Q · f = 24541 GHz. On the other hand, the dielectric constants of the SmTa(Ti1−yZry)O6 ceramics were decreased from 37.6 to 28.9, whereas the quality factor was increased from 24541 to 38320 GHz with increasing composition y from 0 to 0.4. The temperature coefficient of resonant frequency of the ceramics varied from 24.2 to −11.6 ppm/°C. A near zero temperature coefficient of resonant frequency results from the composition of y = 0.3 with a dielectric constant of 31.1 and Q · f value of 37481 GHz.  相似文献   

7.
In this work, a novel (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)(N0.5C0.5) high-entropy nitride-carbide (HENC-1) with multi-cationic and -anionic sublattice structure was reported and their thermophysical and mechanical properties were studied for the first time. The results of the first-principles calculations showed that HENC-1 had the highest mixing entropy of 1.151R, which resulted in the lowest Gibbs free energy above 600 K among HENC-1, (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)N high-entropy nitrides (HEN-1), and (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy carbides (HEC-1). In this case, HENC-1 samples were successfully fabricated by hot-pressing sintering technique at the lowest temperature (1773 K) among HENC-1, HEN-1 and HEC-1 samples. The as-fabricated HENC-1 samples showed a single rock-salt structure of metal nitride-carbides and high compositional uniformity. Meanwhile, they exhibited high microhardness of 19.5 ± 0.3 GPa at an applied load of 9.8 N and nanohardness of 33.4 ± 0.5 GPa and simultaneously possessed a high bulk modulus of 258 GPa, Young's modulus of 429 GPa, shear modulus of 176 GPa, and elastic modulus of 572 ± 7 GPa. Their hardness and modulus are the highest among HENC-1, HEN-1 and HEC-1 samples, which could be attributed to the presence of mass disorder and lattice distortion from the multi-anionic sublattice structure and small grain in HENC-1 samples. In addition, the thermal conductivity of HENC-1 samples was significantly lower than the average value from the “rule of mixture” between HEC-1 and HEN-1 samples in the range of 300-800 K, which was due to the presence of lattice distortion from the multi-anionic sublattice structure in HENC-1 samples.  相似文献   

8.
The ablation performance of a high-entropy ceramic carbide, (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C, was performed by oxyacetylene ablation flame, simulating the extreme service environment at 2000 ºC. Phase and microstructure characterization at multi-length scales was carried out. During ablation, a compositionally and microstructurally complex oxidation layer formed on the ablation surface, which consisted of a combination of (ZrxHf1?x)6(NbyTa1?y)2O17, Ti(NbxTa1?x)2O7, and Tix(ZraHfbNbcTa1?a-b-c)1?xO2. Based on the microstructure information, the ablation mechanisms were proposed considering the oxidation thermodynamics and kinetics. Comparable rates of O inward diffusion and Ti outward diffusion are suggested, and a particular innermost dense layer composed of isolated (ZrxHf1?x)6(NbyTa1?y)2O17 grains embedded in a continuous Ti(NbxTa1?x)2O7 matrix is considered to be beneficial for a better ablation resistance.  相似文献   

9.
《Ceramics International》2020,46(11):19008-19014
Powders of high-entropy Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2C (HECZr) and Hf0.2Ta0.2Ti0.2Nb0.2Mo0.2C (HECMo) carbides were fabricated through the reactive high-energy ball milling (R-HEBM) of metal and graphite particles. It was found that 60 min of R-HEBM is adequate to achieve a full conversion of the initial precursors into a FCC solid solution for both compositions. The HECZr powder possesses a unimodal particle size distribution (40% d ≤ 1 μm, 95% d ≤ 10 μm), and the HECMo powder features a bimodal distribution with a slightly larger particle size overall (30% d ≤ 1 μm, 80% d ≤ 10 μm). Bulk high-entropy ceramics with a minor presence of an oxide phase were fabricated through the spark plasma sintering of these high-entropy powders at 2000 °C with a 10 min dwelling time. The HECZr ceramics possess a relative density of up to 94.8%, hardness of 25.7 ± 3.5 GPa, Young's modulus of 473 ± 37 GPa, and thermal conductivity of 5.6 ± 0.1 W/m·K. HECMo ceramics with a relative density of up to 93.8%, hardness of 23.8 ± 2.7 GPa, Young's modulus of 544 ± 48 GPa, and thermal conductivity of 5.9 ± 0.2 W/m·K were also fabricated. A comparison of the properties of the HECs produced in this study and those previously reported is also provided.  相似文献   

10.
In this study, a novel high-entropy carbide-based ceramic cutting tool was developed. The cutting performance of three kinds of high-entropy carbide-based ceramic tools with different mechanical properties for the ISO C45E4 steel were evaluated. Although the pure (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 ceramic cutting tool exhibited the highest hardness of 25.06 ± 0.32 GPa, the cutting performance was poor due to the chipping and catastrophic failure caused by the low toughness (2.25 ± 0.27 MPa m1/2). The (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–15 vol% cobalt cutting tool with highest fracture toughness (6.37 ± 0.24 MPa m1/2) and lowest hardness (17.29 ± 0.79 GPa) showed the medium cutting performance due to the low wear resistance caused by the low hardness. The (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–7.7 vol% cobalt cutting tool showed the longest effective cutting life of ∼67 min due to the high wear resistance and chipping resistance caused by the high hardness (21.05 ± 0.72 GPa), high toughness (5.35 ± 0.51 MPa m1/2), and fine grain size (0.60 ± 0.15 μm). The wear mechanisms of the cobalt-containing (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 ceramic cutting tools included adhesive wear and abrasive wear and oxidative wear. This research indicated that the high-entropy carbide-based ceramics with high hardness and high toughness have potential use in the field of cutting tool application.  相似文献   

11.
The relationship between the chemical elements of high-entropy boride (HEB) ceramics and their hardness is important for the prediction of high-hardness HEB ceramics. In this work, by designing four HEB ceramics with different chemical elements, the effect of lattice parameter difference factor (δ, represents the difference-degree in lattice parameters among the five individual constitute diborides) on phase composition and lattice-distortion, and the effect of rule of mixture (ROM) average hardness and lattice-distortion on HEB ceramics hardness were studied. The results indicated that, as δ value increases, more severe lattice-distortion occurs inside the HEB ceramics, and a single solid-solution is difficult to be formed. Furthermore, lattice-distortion and the ROM average hardness codetermine the HEB ceramics hardness. The greater lattice-distortion brings about significantly higher hardness for HEB ceramics than their ROM average hardness. Among the four HEBs, (Hf0.2Zr0.2Ta0.2V0.2Nb0.2)B2 exhibits the high hardness of 26 GPa measured using a load of 9.8 N.  相似文献   

12.
The first 413-phase entropy-enhanced (Nb0.8Ti0.05Ta0.05V0.05M0.05)4AlC3 (M = Hf, Zr) (EEMAXHf and EEMAXZr) ceramics were successfully consolidated by spark plasma sintering (SPS) using Nb, Ti, Ta, V, Zr, Hf, Al and graphite as initial materials. The formation of solid solution with five transition metals at the M sites of hexagonal M4AlC3 unit cell was confirmed by elemental analyses. Compared with pure Nb4AlC3, both the electrical and thermal conductivities of the entropy-enhanced ceramics showed a slight decrease, which is attributed to the lattice distortion and the increasing lattice defects that prevents the transfer of electrons and phonons. On the other hand, the mechanical properties of entropy-enhanced ceramics were greatly enhanced compared to pure Nb4AlC3. The measured fracture toughness of EEMAXHf and EEMAXZr ceramics were 8.2 MPa·m1/2 and 10.0 MPa·m1/2, respectively, which were increased by 18.8% and 44.9% compared to Nb4AlC3. The compressive strength of EEMAXHf and EEMAXZr ceramics were 987 MPa and 1187 MPa, respectively, being 92.0% and 130.9% higher than that of Nb4AlC3, respectively. EEMAXHf and EEMAXZr ceramics also possessed the higher Vickers hardness of 6.8 GPa and 7.4 GPa, respectively.  相似文献   

13.
Reactive hot pressing was used to prepare Zr1?xTixB2–ZrC composites with advantageous microstructure and mechanical properties from ZrB2–TiC powders. The reaction mechanisms and the effects of different levels of TiC on the physical and mechanical properties of the resulting composite were explored in detail and compared to conventionally hot‐pressed ZrB2 and ZrB2–ZrC. Incorporation of 10 to 30 vol% TiC enabled full densification and restrained grain growth, reducing the final average grain size from 5.6 μm in pure ZrB2 to a minimum of 1.4 μm in samples with 30 vol% TiC. The flexural strengths and hardnesses of the composites sintered with TiC were consequently greater than the conventionally processed ZrB2–ZrC materials, increasing from 440 MPa and 17.4 GPa to a maximum of 670 MPa and 24.2 GPa at 10 vol% TiC. However, despite a decrease in the total average grain size, the flexural strength at higher TiC levels was limited by an increase in ZrC grain growth, which was observed to determine the flexural strength of the reaction sintered composites similar to the case of ZrB2–SiC.  相似文献   

14.
The formation possibility of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic (HHC-1) was first analyzed by the first-principles calculations, and then, it was successfully fabricated by hot-pressing sintering technique at 2073 K under a pressure of 30 MPa. The first-principles calculation results showed that the mixing enthalpy and mixing entropy of HHC-1 were −0.869 ± 0.290 kJ/mol and 0.805R, respectively. The experimental results showed that the as-prepared HHC-1 not only had an interesting single rock-salt crystal structure of metal carbides but also possessed high compositional uniformity from nanoscale to microscale. By taking advantage of these unique features, it exhibited extremely high nanohardness of 40.6 ± 0.6 GPa and elastic modulus in the range from 514 ± 10 to 522 ± 10 GPa and relatively high electrical resistivity of 91 ± 1.3 μΩ·cm, which could be due to the presence of solid solution effects.  相似文献   

15.
《Ceramics International》2020,46(17):26581-26589
High-entropy metal boron carbonitride ceramic powders including (Ta0.2Nb0.2Zr0.2Hf0.2W0.2)BCN, (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)BCN, and (Ta0.2Nb0.2Zr0.2Ti0.2W0.2)BCN, were successfully synthesized via mechanical alloying at room temperature. Results show that for the first step of 10 h milling, the amorphous BCN phases are observed. After 24 h of second step milling, the as-synthesized high-entropy ceramics exhibit a single face-centered cubic solid solution structure with high compositional uniformity from nano-scale to micron-scale. When heated to 1500 °C for 30min in flowing Ar, the as-prepared high-entropy ceramic powders still show relatively high thermal stability; however, some metals oxides like HfO2 and ZrO2 are detected due to the pre-existing oxides on sample surfaces. After heat treatment, some amorphous phases are still retained. This work suggests a new processing route on the synthesis of high-entropy metal boron carbonitride ceramics.  相似文献   

16.
The single-phase formation and related elastic properties of (TiZrNbTaMo)C with one equimolar and twenty non-equimolar systems have been investigated by first-principles calculation. Based on the calculation results, the “composition-structure-elastic properties” correlation heatmapping predicts that Ti element is favorable for increment of hardness and Young’s modulus, while Mo element shows contrary tendency. The (TixZr2Nb2Ta2Mo4-x)C10-y (x = 1, 2, 3) have been fabricated by carbothermal reduction assisted hot-pressing sintering. The obtained experimental results validate the prediction trend of first-principles calculation. The optimization hardness and Young’s modulus is achieved at (Ti3Zr2Nb2Ta2Mo1)C10-y, and the corresponding value is 27.1 ± 0.6 GPa at 9.8 N and 490 ± 5 GPa, respectively. Noteworthily, the single-phase formation mainly depends on configuration entropy. The equimolar (Ti2Zr2Nb2Ta2Mo2)C10-y exhibits a single-phase with homogeneous chemical composition, but some element segregation can be found in the other two non-equimolar samples sintered at 2100 ℃.  相似文献   

17.
Group VI transition metals do not form room temperature stable carbides with a rock salt structure, however, they can be incorporated into a rock salt high entropy carbide lattice. Novel 5-metal high entropy carbides (Cr, Zr, Nb, Hf, Ta)C (HEC5-Cr) were produced using spark plasma sintering and compared with 4-metal carbide (Zr0.25Nb0.25Hf0.25Ta0.25)C (HEC4) and 8-metal carbide containing Cr (HEC8-Cr). The HEC5-Cr ceramics had higher density and smaller grain size (~14 µm) compared with HEC4 (~28 µm). The solubility limit of Cr on the metal site increased from ~2.5 at% for HEC5-Cr to ~6.0 at% for HEC8-Cr, implying that the high entropy effect increased the solubility of Cr. A significant Cr enrichment was observed at the grain boundaries of HEC5-Cr, and it showed a ~14% increase in nanohardness and a similar indentation modulus compared with HEC4. The nanohardness of HEC5-Cr was up to 41.2 GPa due to increased solid solution strengthening.  相似文献   

18.
Spherical (Zr.2Ti.2Ta.2Nb.2Mo.2)B2 powders with a uniform particle size distribution are successfully prepared using a novel industrial approach, which combines spray-drying process and thermal plasma sintering technology together. In this, single-phase (Zr.2Ti.2Ta.2Nb.2Mo.2)B2 powders are first synthesized via a borothermal reduction process using a mixture of individual metallic oxides and boron powders as starting materials. The influence of boron powder content on the structure of prepared powders is researched. Then, (Zr.2Ti.2Ta.2Nb.2Mo.2)B2 granules are prepared after wet-grinding and spray-drying process, which exhibit a spherical shape and homogeneous element distribution. RF induction thermal plasma is finally used to sinter the granulated particle, and the apparent density of sintered spherical powders is increased to 2.57 g/cm3 from 1.43 g/cm3. Such powders are in potential demand for additive manufacturing techniques, and the successful synthesis of spherical (Zr.2Ti.2Ta.2Nb.2Mo.2)B2 powders may guide the way toward the preparation of many other spherical high-entropy diboride powders.  相似文献   

19.
High-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics, with different carbon contents (x=0.55?1), were prepared by spark plasma sintering using powders synthesized via a carbothermal reduction approach. Single-phase, high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics could be obtained when using a carbon content of x=0.70?0.85. Combined ZrO2 and Mo-rich carbide phases, or residual graphite, existed in the ceramics due to either a carbon deficiency or excess at x=0.55 and 1, respectively. With the carbon content increased from x=0.70 to x=0.85, the grain size decreased from 4.36 ± 1.55 μm to 2.00 ± 0.91 μm, while the hardness and toughness increased from 23.72 ± 0.26 GPa and 1.69 ± 0.21 MPa·m1/2 to 25.45 ± 0.59 GPa and 2.37 ± 0.17 MPa·m1/2, respectively. This study showed that the microstructure and mechanical properties of high-entropy carbide ceramics could be adjusted by the carbon content. High carbon content is conducive to improving hardness and toughness, as well as reducing grain size.  相似文献   

20.
High-entropy transition metal borides often have high mechanical strengths and high electrical conductivities at ambient conditions, making them good candidates for applications in emerging areas. However, how the electrical properties of high-entropy borides (HEBs) change at high pressure remains largely unknown. In this work, we found that the electrical resistivities and their temperature coefficients of two newly synthesized HEBs, (Ta0.2Nb0.2Zr0.2Cr0.2Ti0.2)B2 and (Ta0.167Nb0.167Zr0.167Hf0.167Ti0.167Cr0.167)B2, changed significantly at high pressure. Their resistivities increase linearly with the increasing temperature at both the ambient pressure and a relatively-low high pressure (~ 0.5 – 5 GPa). However, the temperature coefficient of resistivity in the latter case is about ten times of that at ambient pressure. At higher pressures (> ~ 0.5 GPa), the electrical resistivity decreases exponentially with the increasing pressure. The quinary HEB is more conductive than the senary HEB. These findings would be indispensable to developing their applications in harsh and/or extreme conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号