首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Ceramics International》2022,48(6):7864-7875
Based on the ultrasonic C-scan results of 8YSZ coatings after thermal cycles, three-dimensional cylindrical numerical simulations of the physical geometry model of the thermal barrier coating (TBC) sinusoidal surfaces were conducted with finite elements to estimate the stress distribution and evolution law of the top coat (TC)/bond coat (BC) interface, including the centre and edge of the specimen affected by the dynamic growth of the thermally grown oxide (TGO). The results show that when a layer of TGO is grown on the TC/BC interface, compressive stress is uniformly distributed on the TGO interface, and the stress value decreases as a function of the TGO layer thickness. When the thickness of the TGO exceeds a certain value, the compressive stress of all parts of the interface gradually changes to tensile stress; meanwhile, the edges of the model affected by the crest and trough effects of the wave are reflected in the radial and circumferential directions, especially along the axial direction, with alternating concentrated tensile and compressive stresses. TGO growth imposes a minor influence on the magnitude and distributions of the radial and circumferential stresses at the BC interface. The linear elasticity, creep, fatigue, and stress accumulation effects of each layer of TBCs in each thermal cycle were fully considered in this model. The model not only interprets the crest and trough effects of the TC/BC surface interface during the growth of TGO, but also interprets the effects of the core and edge of the cylindrical model, further revealing the reason for which the core and edge of the TBC will most likely form cracks.  相似文献   

2.
Q.M. Yu  Q. He 《Ceramics International》2018,44(3):3371-3380
Residual stress has a significant influence on the crack nucleation and propagation in thermal barrier coatings (TBC) system. In this work, the residual stress in the air plasma spraying (APS) TBC system during cooling process was numerically studied, and the influence of the material properties of each layer on the residual stress was investigated. The morphologies of the interface were described by a piecewise cosine function, and the amplitude for each segment gradually increases. The elasticity, plasticity and creep of top coat (TC), thermally grown oxide (TGO) layer and bond coat (BC) were considered and the elasticity and creep of the substrate layer were taken into account. The material properties of all layers vary with temperature. The results show that the material properties have complex influence on the residual stress during cooling. The effect of the material properties of TC and BC on the residual stress at the interface is relatively large, and that of TGO and substrate is relatively small. These results provide important insight into the failure mechanism of air plasma spraying thermal barrier coatings, and important guidance for the optimization of thermal barrier coating interfaces.  相似文献   

3.
A physical geometric model of the dynamic growth of thermally grown oxide (TGO) was established based on an analysis of the TGO growth of 8YSZ thermal barrier coatings during thermal cycling. Finite-element simulation was used to simulate the evolution law between the coating residual stress and thermal cycling, and the linear elasticity, creep effect, and stress accumulation in each thermal cycle were studied. The interface between the top coat (TC) and the bond coat (BC) was covered with a TGO layer that grew vertically and slowly in a layer-like manner. The stress in the TGO was distributed with a “layer” zonal gradient, and the TGO/BC boundaries were distributed uniformly with a large compressive stress, which decreased the TGO layer thickening. With the longitudinal rapid random TGO growth, the boundaries were subjected to a tensile stress, and a high tensile stress concentration area developed at the boundaries. The internal stress consisted of an alternating and mixed distribution of concentrated compressive and tensile stresses. The concentration area of the maximum equivalent stress was distributed in the one-layer TGO near the TC/TGO interface. When a microcrack formed at the TGO/BC boundaries, the crack was subjected to a tensile stress of different size, with a higher tensile stress at both ends, which facilitated crack expansion. Thus, the 8YSZ thermal barrier coating was prone to crack formation and expansion at the TGO/BC boundaries and in the TGO layer near the TC/TGO boundaries.  相似文献   

4.
This study examines sintering resistance of a thermal barrier coating (TBC), composed of a 7YSZ suspension plasma sprayed (SPS) top coat (TC), an air plasma sprayed (APS) NiCoCrAl bond coat (BC), and an INCONEL 625 substrate, under isothermal and cyclic conditions with a peak temperature of 1080 °C for 400, 800, and 1300 h/cycles. Microstructure, phase composition and microstrain were examined using SEM and XRD. Mechanical properties of fracture toughness, hardness and elastic modulus were obtained using nano-indentation. Samples under cyclic conditions presented faster sintering rate than under isothermal condition due to larger compressive strain and frequent heating and cooling cycles. Faster degradation of mechanical properties due to sintering leads to shorter lifetime of SPS coating under cyclic conditions. Moreover, vertical cracks within SPS coatings reduces compressive stress leading to a greater lifetime as compared to APS coatings exposed to similar conditions.  相似文献   

5.
According to the experimental research results of the thermally grown oxide (TGO) layered growth during the pre-oxidation process of 8 wt.% yttria-stabilized zirconia thermal barrier coating (TBC), a two-dimensional sinusoidal TC/bonding coat (BC) curve interface model of the longitudinal section of TBCs based on finite element simulation was constructed; the thickness and composition of the TGO layer relative to the TC/BC curve interfacial stress distribution and its evolution during the thermal cycling process were studied. The results show that when the TGO layer uses α-Al2O3 as the main oxide (black TGO), the thicker the black TGO layer, the more uniform the stress distribution of the TC/BC interface. When the TGO layer is dominated by spinel-structured Co and Cr oxides (gray TGO), the stress “band” of the TC/BC interface is destroyed; it shows the alternating phenomenon of tensile stress zone and compressive stress zone, and after the rapid random growth of TGO, the concentrated tensile stress increased by a large jump. Affected by the thickness of the prefabricated black TGO layer, there is a limit peak in the thickness of the black TGO layer, the normal stress at the TC/BC boundary is minimized, and the magnitude of the stress change is also minimized.  相似文献   

6.
《Ceramics International》2017,43(3):3089-3100
The residual interfacial stress plays an important role in crack initiating and propagating along the interface, which could result in delamination failure of the thermal barrier coatings (TBCs). In this study, the finite element model of air plasma spraying(APS) TBCs was established to assess the level and distribution of residual stress along top coat(TC)/thermally grown oxide (TGO) and bond coat (BC)/TGO interfaces under thermal cycles. Instead of using vertical stress S22 in global coordinate system, the normal and tangential components in the local system along the interfaces, transformed from stress components S11, S22, and S12 in the global one, were used to evaluate the way the cracks initiate and propagate along the interfaces. Firstly, the effect of the number of thermal cycles on residual stress was investigated. It was found that, for the TBCs model without TGO growth and crack, the impact of the number of thermal cycles on the stress is very insignificant and could be ignored. So the present study only chose to focus on the first thermal cycle. Then the influence of the TGO thickness and the interface amplitude on the normal and tangential residual stresses for both homogeneous and inhomogeneous temperature fields was explored. The results show that the TGO thickness, interface amplitude and temperature field affect the residual stress level and distribution, leading to different fracture mechanisms along TC/TGO and TGO/BC interfaces. Finally, the difference between the vertical stress in the global coordinate system and the normal stress in the local coordinate system was studied. Compared with vertical stress S22, the stress components normal and tangential to the TC/TGO and TGO/BC interfaces are more appropriate to describing the stress distribution along the interfaces and predicting the propensity of crack initiating and propagating along the interfaces.  相似文献   

7.
Local residual stress in thermally grown oxide (TGO) layers is the primary cause of failure of thermal barrier coating (TBC) systems, especially TBCs prepared by air plasma spray (APS) with a highly irregular TGO. Herein, the distribution of residual stress and the evolution of the irregular TGO layer in APS TBCs were investigated as a function of oxidation time. The stress was measured from cross-sectional micrographs and converted to the actual stress inside the coatings before sectioning. The TGO exhibited significant inhomogeneity at different locations. Stress conversion occurred across the TGO thickness; the layer near the yttria-stabilised zirconia (YSZ) component exhibited compressive stress, whereas that along the bond coat was under tensile stress. The evolution of the compressive stress is also discussed. These analyses may provide a better understanding of the mechanism of APS TBCs.  相似文献   

8.
A set of aerofoil shaped air plasma sprayed thermal barrier coated (APS-TBC) specimens were adopted in this paper to investigate the stress distributions in the ceramic top coat (TC) and the thermally grown oxide (TGO), the mechanism of local crack generation and propagation at the TC/BC (bond coat) interface. The failure mode of the TBC system, the distribution of asperities at TC/BC interface, thickness of the TC and BC, and the TC microstructure were found to be influenced by substrate curvature. Residual stress was therefore measured across the thickness of the TC, along the undulating TGO and mapped at locations of asperities where failure tended to occur to interpret the initiation of local failure. The role of the TGO was investigated via its chemical bonding with the TC and the decohesion occurring at the TGO/BC interface. The crack propagation at the interface has been discussed with respect to the macro-failure of the TBC system.  相似文献   

9.
The residual stresses could cause extensive damage to thermal barrier coatings and even failure. A finite element model of thermal barrier coating system had been designed to simulate the residual stresses and then to analyze the crack nucleation behavior. The distribution of normal and tangential stress components along top coat (TC) / thermally grown oxide (TGO) and TGO / bond coat (BC) interfaces are shown in this work. It is found that the maximum tensile stress along TC/TGO interface occurs in the peak region during heating-up, and that along TGO/BC interface is also located in the peak region, but during the process of cooling-down. A parameter correlating the normal stress component with corresponding tangential one was used to evaluate the interfacial cracks, indicating that cracks will initiate at the peak-off region of TC/TGO interface in the heating-up phase, but for TGO/BC interface, cracks will initiate at the peak position in the cooling-down phase.  相似文献   

10.
Thermal barrier coatings (TBC) allow the metallic internal components of gas turbine engines to operate at elevated temperatures near its melting points. Formation of thermally grown oxide (TGO) layers at the top coat (TC) and bond coat (BC) interface induces cracks in the TC that may lead to complete TBC failure due to spallation. An SEM image-based finite element (FE) model is developed using commercial finite element package ABAQUS to investigate the development of residual stresses resulting from cyclic loading of TBCs. The model includes thermo-mechanical material properties and considers the real interface between the coating layers. The model includes real pores based on an SEM image, taking advantage of image processing techniques. Effect of TC surface roughness and pores on the developed residual stresses during thermal cycling is investigated with respect to different TGO thicknesses. The analysis shows that presence of TC roughness causes stress concentration sites during heating that may force horizontal cracks to initiate and propagate with stress values that are indifferent to the TGO thickness. The pores are found to shift stress concentration regions from the TC/TGO interface to the vicinity of the pores during cooling, and that may cause horizontal cracks to start from within the TC with stresses that increase with TGO thickness. Moreover, the effect of creep for all layers on the generated residual stresses is studied. Considering creep gives lower stresses at the end of cooling, however, stress distribution remains the same with and without creep.  相似文献   

11.
Comprehensive understanding of failure mechanism of thermal barrier coatings (TBCs) is essential to develop the next generation advanced TBCs with longer lifetime. In this study, a novel numerical model coupling crack propagation and thermally grown oxide (TGO) growth is developed. The residual stresses induced in the top coat (TC) and in the TGO are calculated during thermal cycling. The stresses in the TC are used to calculate strain energy release rates (SERRs) for in-plane cracking above the valley of undulation. The overall dynamic failure process, including successive crack propagation, coalescence and spalling, is examined using extended finite element method (XFEM). The results show that the tensile stress in the TC increases continuously with an increase in an undulation amplitude. The SERRs for TC cracks accumulate with cycling, resulting in the propagation of crack toward the TC/TGO interface. The TGO cracks nucleate at the peak of the TGO/bond coat (BC) interface and propagate toward the flank region of the TC/TGO interface. Both TC cracks and TGO cracks successively propagate and finally linkup leading to coating spallation. The propagation and coalescence behavior of cracks predicted by this model are in accordance with the experiment observations. Therefore, this study proposed coating optimization methods towards advanced TBCs with prolonged thermal cyclic lifetime.  相似文献   

12.
《Ceramics International》2019,45(16):19829-19844
To ascertain material parameter effects on the stress states is beneficial to comprehend the crack growth behavior and delamination mechanism in thermal barrier coatings (TBCs). In this work, numerical models are established to explore the combined effects of material parameters including creep, plastic deformation, and thermally grown oxide (TGO) growth on the stress states upon temperature cycling. For all layers, thermal-physical properties reliant on temperature are incorporated into the model. The process of bond coat (BC) oxidation, namely TGO growth, is materialized by changing material properties with cycles. Based on the principle of a single variable, the residual stress states are explored using many different material combinations. The results indicate that the tensile stress in the ceramic top coat (TC) decreases with the increase in the TGO lateral strain distribution gradient. Increasing the BC yield strength or decreasing the TGO growth stress can reduce the tensile stress in TC if there is no creep in the model. When BC yield strength is relatively high (≥150 MPa), BC creep will strengthen the TC tensile stress. TGO creep can decrease the tensile stress in TC irrespective of TGO growth stress and BC creep. When TGO creep rate is higher than 10Btgo, an exceedingly small tensile stress can always be achieved. This work could provide significant theory direction for material selection and composition control towards advanced TBCs with prolonged lifetime.  相似文献   

13.
《Ceramics International》2019,45(14):16948-16962
To ascertain the crack growth behavior and coalescence mechanism in thermal barrier coatings (TBCs) is beneficial for understanding the failure of TBCs and proposing the probable optimization methods. In this work, a novel lamellar structure model with real interface morphology is developed to explore the crack growth behavior and the failure mechanism of TBCs during thermal cycling. Three typical defects which include pore, inter-splat crack, and intra-splat are incorporated in the model. To simulate the oxidation process of the bond coat (BC) realistically, The oxidation growth process is simulated via changing the BC properties to thermally grown oxide (TGO) properties layer by layer. The effects of the lateral growth strain distribution through TGO thickness on the stress states are executed. Moreover, the influences of BC creep on the crack growth and coating lifetime are further elaborated. The results show that the larger the lateral growth strain gradient, the smaller the residual tensile stress. The irregular interface morphology results in the redistribution of residual stresses. Although the pores and cracks can alleviate the tensile stress near the valley, large stress concentration will occur near them. At the early phase of thermal cycling, the cracks grow steadily. After more cycles, the cracks propagate rapidly and merge with others. The simulated delamination path is in agreement with the experiment results. Not only does BC creep change the crack coalescence mechanism, it also decreases the thermal cyclic lifetime of TBCs. The coating optimization method proposed in this study provides another option for developing advanced TBCs with longer lifetime.  相似文献   

14.
《Ceramics International》2023,49(3):4795-4806
Thick thermal barrier coatings (TTBCs) have been developed to increase the lifetime of hot section parts in gas turbines by increasing the thermal insulating function. The premeditated forming of segmentation cracks was found to be a valuable way for such an aim without adding a new layer. The TTBC introduced in the current study are coatings with nominal thickness ranging from 1 to 1.1 consisting of MCrAlY bond coat and 8YSZ top coat deposited by air plasma spray technique (APS). TTBCs with segmented crack densities of 0.65 mm?1 (type-A) and 1 mm?1 (type-B) were deposited on a superalloy substrate by adjusting the coating conditions. It was found that the substrate temperature has an influential role in creating the segmentation crack density. The crack density was found to increase with substrate temperature and liquid splat temperature. The two types of coatings (type-A and B) with different densities of segmentation crack were heat-treated at 1000 °C (up to 100 h) and 1100 °C (up to 500 h). The variation of hardness measured by indentation testing indicates a similar trend in both types of coatings after heat treatments at 1000 °C and 1100 °C. Weibull analysis of results demonstrates that higher preheating coating during the deposition results in a denser YSZ coating. The growth rate of TGO for TTBCs was evaluated for cyclic and isothermal oxidation routes at 1000 °C and 1100 °C. The TGO shows the parabolic trend for both two types of coatings. The Kps value for two oxidation types is between 5.84 × 10?17 m2/s and 6.81 × 10?17 m2/s. Besides, the type B coating endures a lifetime of more than 40 cycles at thermal cycling at 1000 °C.  相似文献   

15.
《Ceramics International》2022,48(3):3133-3147
Failures in thermal barrier coatings (TBCs) are associated with the build-up of residual stresses that result from thermal cycling, growth strain, and stress relaxation associated with high temperatures. To address these highly coupled processes, three aspects were examined. The first was concerned with the effect of thermal cycling and thermal gradients on the resulting residual stress fields. The second with the dynamic growth of thermally grown oxide (TGO) layer using novel finite volume-finite element algorithms. In the third, we examined the effect of stress relaxation on the (TC/TGO) interface. We modelled these highly coupled processes using transient thermomechanical finite element simulations. The temperature profile and state of oxidation variation with time were imported as a predefined field and solved in ANSYS nonlinear platform. Our results revealed that stress relaxation of the TGO stresses at high temperatures leads to a reduction in the TC/TGO interfacial stresses. They also revealed that the use of the isotropic hardening rule limits the increase in plastic deformation of the bond coat (BC), while the use of kinematic hardening rule leads to ratcheting. Furthermore, we highlighted the importance of considering uneven growth of TGO on the resulting stress field.  相似文献   

16.
Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma‐sprayed YSZ TBCs were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of TBCs decreased with the increasing of surface temperatures. However, the failure modes of these TBCs subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering‐induced delamination of the top coat. The thickness of thermally grown oxide (TGO) was significantly less than the critical TGO thickness to result in the failure of TBCs through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of TBCs subjected to gradient thermal cyclic test was primarily induced by sintering during high‐temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of TBCs through sintering‐induced delamination of the top coat. Based on the above‐described results, this study should aid in facilitating the lifetime evaluation of the TBCs, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions.  相似文献   

17.
The low thickness of thermally grown oxide (TGO) layer and presence of amorphous phase in the as-sprayed LaMgAl11O19 (LaMA) coating reduce the thermal cycling lifetime of thermal barrier coatings (TBCs). In the present study, the as-sprayed Ni-22Cr-10Al-1.0Y bond coat was preoxidized at 1060?°C to produce a continuous oxide scale prior to subsequent deposition of the ceramic top coat. The optimum time of peroxidation treatment and thickness of the continuous aluminum oxide layer were estimated 15?h and 2?µm respectively. The oxidized layer due to the preoxidation treatment of bond coating reduces the amorphous phase in as-sprayed LaMA coating and increases the microhardness of LaMA coating from approximately 600 to 900HV. Also, preoxidation of the NiCrAlY bond coating increases adhesion strength of the LaMA top coating, even slightly more than the adhesion strength of the as-spray 8YSZ coating. The LaMA coatings have a lower hardness in compared with the 8YSZ coating (~ 1010Hv), which results a better elastic behavior.  相似文献   

18.
Performance of air plasma sprayed (APS) thermal barrier coatings (TBCs) with multilayer and functionally graded topcoat were investigated in thermal shock conditions. Ceria-yttria stabilized zirconia (CSZ) and micro- and nano-structured yttria stabilized zirconia (YSZ and YSZ-N) were used to produce coating samples. The samples were classified into four families, namely single-layer, double-layer, triple-layer and functionally graded (FG). To measure thermal shock resistance, the heating/water quenching cycles were repeated 70 times and 30% destruction of the coating was considered its functionality limit. Thus, cycles did not continue for those coatings that were destroyed more than 30%. At the end of each cycle, the surface and edge damage were determined from the photos of samples. Furthermore, scanning electron microscope (SEM) images and energy-dispersive spectrometer (EDS) analysis of samples’ cross-section were taken before and after the test. After collecting the experimental data, effects of various factors on outputs were investigated. The results showed that YSZ-N single-layer coating and triple-layer with CSZ as a top layer, has less thermally grown oxide (TGO) thickness and best performance in thermal shock conditions.  相似文献   

19.
Gradient thermal cycling test was performed on atmospheric plasma‐sprayed (APS) thermal barrier coatings (TBCs) with different thermally grown oxide (TGO) thicknesses. The TBCs with a thickness of TGO from 1.3 μm to 7.7 μm were prepared by controlling isothermal oxidation time of cold‐sprayed MCrAlY bond coat. The gradient thermal cycling test was performed at a peak surface temperature of 1150°C with 150°C difference across 250 μm thick YSZ with a duration of 240 s for each cycle. Results indicate that the thermal cyclic lifetime of APS TBCs is significantly influenced by TGO thickness. When initial TGO thickness increases from 1.3 μm to 7.7 μm, the thermal cyclic lifetime decreases following a power functions by a factor of about 20. It was revealed that there exists a critical TGO thickness over which the thermal cyclic lifetime is reduced more significantly with the increase in TGO thickness. Moreover, two typical failure modes were observed. The failure mode changes from the cracking within APS YSZ at a TGO thickness less than the critical value to through YSZ/TGO interface at TGO thickness range higher than the critical value.  相似文献   

20.
《Ceramics International》2023,49(2):2061-2072
This paper investigates the resistance of two types of thermal barrier coatings and compares their behavior with common coatings. Coatings’ layers in the first and second target sample were fabricated as HVOF/APS/APS (two bondcoats and one topcoat) and APS/APS (one bondcoat and topcoat) with diffusion pre-coating, respectively. Also, to accurately compare the behavior of these two types of coatings with conventional coatings used in gas turbines, this paper explored the resistance of three types of coatings applied as APS/APS, HVOF/APS, and HVOF coatings against thermal shock. In order to create shock loading, five types of laboratory samples were heated under regular cycles and cooled down with water. During the experiment, the sample changes caused by thermal shock loading were investigated through visual inspections. Then, after the experiment, the SEM images were leveraged to inspect the changes. In addition, changes in the structure of coating layers and their degradation process were studied. The results show that using two bond layers increases the resistance and life of the coating against heat shock by up to 1.40 times. Among the samples with one band coat, the sample with a diffusion coating applied under the BC showed the best performance. The sample life increased by 1.25 times compared to the common APS/PAS coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号