共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(11):8246-8254
We show that combining high temperature chlorination with the chemical sensitivity of the A-atom planes of single crystals of some nano-lamellar MAX phases allows one to synthesize highly porous and electrically conducting carbides. Focusing on the case of porous Cr3C2, we present the dependence of the layer morphology, structure and formation kinetics on processing parameters such as temperature and time. The determination of the Raman signature of Cr3C2 and Cr7C3 allows us to follow the creation and elimination of the various phases as a function of processing time. Electrical resistivity and magnetoresistance data versus temperature and magnetic field are also presented and analyzed. 相似文献
2.
Zerong Zhang Xiaohui Yin Yuhai Qian Jingjun Xu Jun Zuo Meishuan Li 《Journal of the American Ceramic Society》2020,103(1):670-680
In the diffusion couple of Ti3SiC2 and Ti3AlC2, only interdiffusion of Si and Al occurred during diffusion treatment process. Based on the concentration profiles of Si and Al measured by electron probe microanalysis (EPMA), the interdiffusion coefficients of Si and Al at 1373-1673 K in Ti3SiC2–Ti3AlC2 diffusion couple were determined by both the Boltzmann-Matano (B-M) method and the Saucer-Freise (S-F) method. At the position of Matano plane with the composition of Ti3Al0.5Si0.5C2, the interdiffusion coefficient could be expressed as Dint (m2/s) = 5.6 × 10−4⋅exp [−246 ± 14 (kJ/mol)/RT]. Based on the two methods, the calculated interdiffusion coefficients increased with increasing temperature, and the magnitudes of their absolute values were on the order of 10–13-10–11 m2/s at 1373-1673 K. At 1373-1573 K, the calculated interdiffusion coefficients decreased monotonously with the increase of Si concentration, that is, xSi/(xAl + xSi). But at 1673 K, the variation trend of interdiffusion coefficients with xSi/(xAl + xSi) was no longer monotonous, probably due to the presence of Ti5Si3 phase and voids on Ti3AlC2 side. 相似文献
3.
Shae Jolly Samantha Husmann Volker Presser Michael Naguib 《Journal of the American Ceramic Society》2023,106(5):3261-3271
Herein, we report the synthesis of TiO2–SnO2–C/carbide hybrid electrode materials for Li-ion batteries (LIBs) via two different methods of controlled oxidation of layered Ti2SnC. The material was partially oxidized in an open-air furnace (OAF) or using a rapid thermal annealing (RTA) approach to obtain the desired TiO2–SnO2–C/carbide hybrid material; the carbide phase encompassed both residual Ti2SnC and TiC as a reaction product. We tested the oxidized materials as an anode in a half cell to investigate their electrochemical performance in LIBs. Analysis of the various oxidation conditions indicated the highest initial lithiation capacity of 838 mAh/g at 100 mA/g for the sample oxidized in the OAF at 700°C for 1 h. Still, the delithiation capacity dropped to 427 mAh/g and faded over cycling. Long-term cycling demonstrated that the RTA sample treated at 800°C for 30 s was the most efficient, as it demonstrated a reversible capacity of around 270 mAh/g after 150 cycles, as well as a specific capacity of about 150 mAh/g under high cycling rate (2000 mA/g). Given the materials’ promising performance, this processing method could likely be applied to many other members of the MAX family, with a wide range of energy storage applications. 相似文献
4.
Clio Azina Tim Bartsch Damian M. Holzapfel Martin Dahlqvist Johanna Rosen Lukas Löfler Alba San Jose Mendez Marcus Hans Daniel Primetzhofer Jochen M. Schneider 《Journal of the American Ceramic Society》2023,106(4):2652-2665
Herein we report on the synthesis of a metastable (Cr,Y)2AlC MAX phase solid solution by co-sputtering from a composite Cr–Al–C and elemental Y target, at room temperature, followed by annealing. However, direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room-temperature depositions, followed by annealing to 760°C led to the formation of phase pure (Cr,Y)2AlC by diffusion. Higher annealing temperatures caused a decomposition of the metastable phase into Cr2AlC, Y5Al3, and Cr-carbides. In contrast to pure Cr2AlC, the Y-containing phase crystallizes directly in the MAX phase structure instead of first forming a disordered solid solution. Furthermore, the crystallization temperature was shown to be Y-content dependent and was increased by ∼200°C for 5 at.% Y compared to Cr2AlC. Calculations predicting the metastable phase formation of (Cr,Y)2AlC and its decomposition are in excellent agreement with the experimental findings. 相似文献
5.
R. Kapoor S. T. Oyama B. Friihberger B. D. DeVries J. G. Chen 《Catalysis Letters》1995,34(1-2):179-189
Powder materials of a series of early transition metal (groups 4–6B) carbides and nitrides, including TiC, VC, NbC, Mo2C, WC, TiN, VN and Mo2N, have been characterized by nearedge X-ray absorption fine structure (NEXAFS). A comparison of the carbon and nitrogen K-edge features reveals systematic trends in the electronic properties of these materials. These results are compared to an earlier NEXAFS characterization of thin VC films produced on a single crystal V(110) surface. In addition, the NEXAFS data are also compared to existing band-structure calculations for carbides and nitrides of early transition metals. 相似文献
6.
金属氮化物/碳化物加氢催化剂研究进展 总被引:1,自引:0,他引:1
过渡金属氮化物与碳化物是一类间充性化合物,其结构特点决定其在催化反应上具有独特的催化效果。本文介绍了过渡金属氮化物与碳化物基本性质与作为加氢催化剂的制备进展,综述了其在催化加氢,脱氢,脱硫等方面的研究进展,并展示了重要的理论研究意义和潜在的应用前景。 相似文献
7.
Bin Liu Benjamin Petersen Yanwen Zhang Jingyang Wang William J. Weber 《Journal of the American Ceramic Society》2016,99(8):2693-2698
Low‐energy recoil events in Ti3SiC2 are studied using ab initio molecular dynamics simulations. We find that the threshold displacement energies are orientation dependent because of anisotropic structural and/or bonding characteristic. For Ti and Si in the Ti–Si layer with weak bonds that have mixed covalent, ionic, and metallic characteristic, the threshold displacement energies for recoils perpendicular to the basal planes are larger than those parallel to the basal planes, which is an obvious layered‐structure‐related behavior. The calculated minimum threshold displacement energies are 7 eV for the C recoil along the direction, 26 eV for the Si recoil along the direction, 24 eV for the Ti in the Ti–C layer along the direction and 23 eV for the Ti in the Ti–Si layer along the direction. These results will advance the understanding of the cascade processes of Ti3SiC2 under irradiation and are expected to yield new perspective on the MAX phase family that includes more than 100 compounds. 相似文献
8.
Influence of ordered carbon‐vacancy networks on the electronic structures and elastic properties of Nb4AlC3−x
下载免费PDF全文

Hui Zhang Tao Hu Zhaojin Li Yanhui Zhang Minmin Hu Xiaohui Wang Yanchun Zhou 《Journal of the American Ceramic Society》2017,100(2):724-731
Carbon‐vacancy‐bearing Nb4AlC3?x has the best high‐temperature mechanical robustness among MAX phases. The existing form of the vacancies has been long overlooked. Recently, the vacancies in Nb4AlC3?x have been identified to be ordered, establishing an ordered compound Nb12Al3C8. Here, the spatial distribution of the ordered vacancies and their influences on bonding characteristics and elastic properties are unraveled by thoroughly comparing Nb12Al3C8 and vacancy‐free Nb4AlC3. In Nb12Al3C8, the carbon vacancies break only relatively weak Nb–C bonds and form ordered equilateral triangular carbon‐vacancy networks (OETCVNs) to maximize the bond strengthening effect. The networks slightly shift partial and total density of states toward the Fermi energy level, and bring about a feature of “de‐metallization”. Meanwhile, the presence of OETCVNs results in the softening of elastic modulus, decreasing of the anisotropy of Young's modulus, yet increasing that of shear modulus. These results shed lights on the carbon‐vacancy ordering behavior of MAX phases, and provide an opportunity to tailor their electronic structures and elastic properties through defect engineering. 相似文献
9.
Yichen Wang Duo Yu Jie Yin Buhao Zhang Hangfeng Zhang Xuejian Liu Yulong An Michael J. Reece Zhengren Huang 《Journal of the American Ceramic Society》2022,105(10):6395-6406
The ablation behavior of (Hf–Ta–Zr–Nb–Ti)C high-entropy carbide (HEC-0) was investigated using a plasma flame in air for different times (60, 90, and 120 s) at about 2100°C. The effect of SiC content on the ablation resistance of HEC–xSiC composites (x = 10 and 20 vol%) was also studied. The linear ablation rate of HEC-0 decreases with increasing ablation time, showing the positive role of the oxide layer with a complex composition. The linear ablation rate of HEC–10 vol% SiC (0.3 µm s−1) is only a 10th of that of HEC-0, showing a significant improvement in ablation resistance, probably due to the formation of a protective oxide layer containing melted SiO2 and refractory Hf–Zr–Si–O oxides. 相似文献
10.
Ehsan Ghasali Mohammad Reza Derakhshandeh Yasin Orooji Masoud Alizadeh Touradj Ebadzadeh 《Journal of the European Ceramic Society》2021,41(9):4774-4787
In the present study, two V-Al-C based MAX phases, i.e., V2AlC and V4AlC3 having two types of ordering were successfully manufactured by spark plasma sintering and the corrosion behavior of sintered samples was evaluated. Al, V and C metal powders were mixed with the desired molar ratios by a mixer mill, and sintered at 1300 °C. The relative density calculation revealed almost full densification for both prepared MAX phases. The measurements of mechanical properties showed a low increase in bending strength and Vickers hardness of V4AlC3 compared to V2AlC MAX phase. Evaluation of corrosion behavior of developed MAX phases was carried out in 6.5 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. Corrosion current density and corrosion potential of V2AlC (5.3 ± 0.21 μA/cm2 and -0.451 ± 0.01 V, respectively), and V4AlC3 (1.07 ± 0.22 μA/cm2 and -0.091 ± 0.02 V, respectively) were measured and no passivation behavior was observed in their potentiodynamic polarization curves. However, EIS tests at open circuit potential confirmed more corrosion resistance of V4AlC3compared to V2AlC. These tests also revealed the active dissolution of MAX phases in 6.5 M HCl solution at anodic potential of +0.1 V, while the impedance values of V4AlC3 were larger than those of V2AlC. Microstructural investigation revealed the preferential dissolution of V2AlC phase in grain boundaries after corrosion test. Moreover, the layered structure of V2C MXenes was observed in some regions. After corrosion test, V4C3 MXene layers had larger thickness compared to V2AlC. It was found that V4AlC3 with higher amount of Al2O3 and thicker layers has more corrosion resistance than V2AlC MAX phase. 相似文献
11.
《Journal of the European Ceramic Society》2022,42(13):5273-5279
Group VI transition metals do not form room temperature stable carbides with a rock salt structure, however, they can be incorporated into a rock salt high entropy carbide lattice. Novel 5-metal high entropy carbides (Cr, Zr, Nb, Hf, Ta)C (HEC5-Cr) were produced using spark plasma sintering and compared with 4-metal carbide (Zr0.25Nb0.25Hf0.25Ta0.25)C (HEC4) and 8-metal carbide containing Cr (HEC8-Cr). The HEC5-Cr ceramics had higher density and smaller grain size (~14 µm) compared with HEC4 (~28 µm). The solubility limit of Cr on the metal site increased from ~2.5 at% for HEC5-Cr to ~6.0 at% for HEC8-Cr, implying that the high entropy effect increased the solubility of Cr. A significant Cr enrichment was observed at the grain boundaries of HEC5-Cr, and it showed a ~14% increase in nanohardness and a similar indentation modulus compared with HEC4. The nanohardness of HEC5-Cr was up to 41.2 GPa due to increased solid solution strengthening. 相似文献
12.
Processing and nitridation of MgO/CeO2 -doped silicon containing SiC whiskers was studied. The reaction time was dramatically reduced by incorporating MgO/CeO2 dopants and SiC whiskers in silicon powders prior to nitridation. The decomposition of SiC whiskers depends on the nitriding temperature, sintering aids, and whisker surface composition. 相似文献
13.
纳米碳酸钙在非等温条件下热分解动力学及机理研究 总被引:3,自引:0,他引:3
Experiments on thermal decomposition of nano-sized calcium carbonate were carried out in a thermo-gravimetric analyzer under non-isothermal condition of different heating rates (5 to 20K·min-1). The Coats and Redfern's equation was used to determine the apparent activation energy and the pre-exponential factors. The mechanism of thermal decomposition was evaluated using the master plots, Coats and Redfern's equation and the kinetic compensation law. It was found that the thermal decomposition property of nano-sized calcium carbonate was different from that of bulk calcite. Nano-sized calcium carbonate began to decompose at 640℃, which was 180℃lower than the reported value for calcite. The experimental results of kinetics were compatible with the mechanism of one-dimensional phase boundary movement. The apparent activation energy of nano-sized calcium carbonate was estimated to be 151kJ·mol-1 while the literature value for normal calcite was approximately 200kJ·mol-1. The order of magnitude of pre-e 相似文献
14.
Apurv Dash Jürgen Malzbender Khushbu Dash Marcin Rasinski Robert Vaßen Olivier Guillon Jesus Gonzalez-Julian 《Journal of the American Ceramic Society》2020,103(10):5952-5965
The compressive creep of a SiC whisker (SiCw) reinforced Ti3SiC2 MAX phase-based ceramic matrix composites (CMCs) was studied in the temperature range 1100-1300°C in air for a stress range 20-120 MPa. Ti3SiC2 containing 0, 10, and 20 vol% of SiCw was sintered by spark plasma sintering (SPS) for subsequent creep tests. The creep rate of Ti3SiC2 decreased by around two orders of magnitude with every additional 10 vol% of SiCw. The main creep mechanisms of monolithic Ti3SiC2 and the 10% CMCs appeared to be the same, whereas for the 20% material, a different mechanism is indicated by changes in stress exponents. The creep rates of 20% composites tend to converge to that of 10% at higher stress. Viscoplastic and viscoelastic creep is believed to be the deformation mechanism for the CMCs, whereas monolithic Ti3SiC2 might have undergone only dislocation-based deformation. The rate controlling creep is believed to be dislocation based for all the materials which is also supported by similar activation energies in the range 650-700 kJ/mol. 相似文献
15.
《Journal of the European Ceramic Society》2019,39(15):4595-4601
MAX-phase materials have shown great potential for different technical applications due to their mechanical properties. If the main group element is aluminium their excellent oxidation resistance also makes them attractive for several high temperature applications. As an example the thermodynamically stable MAX-phase Ti2AlC forms a thin, protective alumina layer in oxidising atmospheres at elevated temperatures. This alumina layer is formed due to the high Al activity within the material and prevents further attack by the environment. However, high temperature oxidation tests at 900 °C in air of “technical” Ti2AlC which is not pure single-phase Ti2AlC led to the formation of a non-continuous alumina scale which is intersected by a mixed TiO2/Al2O3 scale. Furthermore, internal oxidation was observed. This “technical” material consists of two phases namely Ti2AlC plus γ-TiAl due to the manufacturing route. Such γ-TiAl-grains are preferentially oxidised. This type of internal attack can be suppressed by a preceding fluorine treatment. 相似文献
16.
《Journal of the European Ceramic Society》2019,39(13):3651-3659
Titanium silicon carbide (Ti3SiC2) powder was synthesized by molten salt shielded synthesis route of elemental reactants. Potassium bromide (KBr) was used for gas-tight encapsulation of the consolidated reaction mixture for further high temperature processing. The synthesis of Ti3SiC2 powder was carried out in air, the salt cladding and molten salt pool provided for the protection of the material against oxidation both at low and high temperature. The process yielded free flowing Ti3SiC2 powders without the need of a milling step. Al addition to the reaction mixture resulted in a high purity (96 wt. %) of Ti3SiC2 at a synthesis temperature of 1250 °C. The synthesized micro-metric Ti3SiC2 can be milled to nano-metric powders. 相似文献
17.
《Journal of the European Ceramic Society》2022,42(5):2084-2088
Thermal expansion of MAX phases along different directions tends to be different because of the anisotropy of hexagonal crystals. Herein, a new Hf2SeC phase was synthesized and confirmed to be relatively isotropic, and the coefficients of thermal expansion (CTEs) along a and c directions were determined to be 9.73 μK?1 and 10.18 μK?1, respectively. The strong MS bond endowed Hf2SC and Zr2SC lower CTEs than those of Hf2SeC and Zr2SeC. The relationship between the thermal expansion anisotropy and the ratio of elastic stiffness constant c11 and c33 was established. This straightforward approximation can be used to roughly predict the thermal expansion anisotropy of MAX phases. 相似文献
18.
《Ceramics International》2015,41(6):7626-7631
Ti3Si(1−x)AlxC2 (x=0–1) quarternary MAX phase materials were prepared by spark plasma sintering of TiC, Ti, Si and Al powder mixtures at 1200 °C. Effect of Al addition on lattice parameters, density and hardness were investigated. Impurities are limited to binary phases of TiC and Ti5Si3. No multinary compound other than Ti3Si(1−x)AlxC2 can be detected. TiC exists as impurity in all samples and trace amount of Ti5Si3 can be detected in Samples x=0.1–0.6. Oxidation of Al cannot be avoided although all sintering were performed under vacuum and trace amount of Al2O3 can be found in all samples with Al addition. Experimental results show that the lattice parameters a and c increase linearly with increasing Al content for x=0–1. The lattice variations are strongly anisotropic and follow Vegard׳s law. Both density and hardness decrease as Al content increases. The linear variation of lattice parameters, d spacings of crystalline faces and density against Al concentration suggest that continuous solid solutions of Ti3Si(1−x)AlxC2 (x=0–1) may have been formed between Ti3SiC2 and Ti3AlC2. 相似文献
19.
《Ceramics International》2023,49(5):8048-8057
To enhance the absorption performance of silicon carbide fiber (SiCf), hybrid fibers with a double shell structure (Ti3SiC2 and carbon nanotubes (CNTs)) on the SiCf (CNT@Ti3SiC2@SiCf) were successfully synthesized by the combination of molten salt method and floating catalytic chemical vapor deposition. A series of 10% weight fraction fibers reinforced paraffin samples was prepared to study the double coating influences on the electromagnetic wave (EMW) absorption performances. Coated by Ti3SiC2 and CNTs, the dielectric permittivity of hybrid fibers could be modulated in a quite wide range. The CNT@Ti3SiC2@SiCf with a thickness of 3.8 mm showed a minimum reflection loss value of ?53 dB at 6.57 GHz, and the CNT@Ti3SiC2@SiCf with a thickness of 2.5 mm presented a wide effective absorption bandwidth of 5.6 GHz (from 9 to 14.6 GHz). The highly improved EMW absorption performance of CNT@Ti3SiC2@SiCf was attributed to the combination of conductive loss and dielectric loss aroused by interfaces. The excellent absorption performance provided the modified SiCf with a high potential in the application of EMW absorbers. 相似文献
20.
Ke Chen Youhu Chen Jianning Zhang Yujie Song Xiaobing Zhou Mian Li Xiaomeng Fan Jie Zhou Qing Huang 《Ceramics International》2021,47(6):7582-7587
Medium- and high-entropy alloys or ceramics for tuning the physicochemical properties of materials by the combination of multiple principal elements have received much interest. Herein, a medium-entropy (Ti, Zr, Hf)2SC phase was synthesized attributing to the structural and chemical diversity of MAX phases. The crystal structure of (Ti, Zr, Hf)2SC was determined by the Rietveld refinement of XRD, SEM, and atom-resolved TEM along with EDS elemental analysis. Phase evolution of X-ray diffraction patterns and TG/DSC curves were employed to reveal the synthesis mechanism of (Ti, Zr, Hf)2SC from 2TiC–Zr–ZrC-2HfH2-3.2FeS reactant system. The Vicker's hardness and the electrical resistivity of (Ti, Zr, Hf)2SC were found higher than those of Ti2SC, but the thermal conductivity of (Ti, Zr, Hf)2SC was lower. 相似文献