首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   

2.
The ultra-thin multilayer ceramic capacitors (MLCCs) with layer thickness less than 1 μm or even 0.5 μm are in urgent demand due to the rapid development of modern electronic industries. Notably, the dielectric and ferroelectric properties of nanograined BaTiO3-based ceramics, which are widely used as dielectric materials in MLCCs, are highly related to grain size. In this work, nanograined BaTiO3-based ceramics with various grain sizes (50-100 nm) were prepared via the chemical coating method. The grain size effect on the dielectric and energy storage properties were systematically investigated. TEM and EDS images demonstrate that the typical core-shell structure is obtained inside ceramic grains even if the grain size is reduced to 50 nm. The fine-grain ceramic displays a lower maximal polarization but a higher breakdown strength, which ascribes to its weaker ferroelectric contribution and higher grain boundary ratio, respectively. As a result, it is confirmed that there exists an optimal grain size around 70 nm where maximum discharge energy density is achieved under the synergy effect of breakdown strength and polarization, which is also verified by a finite element analysis based on a modified hyperbolic tangent model. All these features provide important guidance towards the design of ultra-thin layer MLCCs by optimizing the dielectric properties and energy storage performance while pursuing miniaturization.  相似文献   

3.
《Ceramics International》2023,49(8):12097-12104
A fine-grained Yb-doped (Ba1-xCax)mTiO3 (BCT)-based ceramic, possessing high dielectric properties and outstanding reliability under a reducing atmosphere sintering, was synthesized by the chemical coating method. The mean grain size of the ceramics was 170 nm. A distinct core-shell structure of ceramics was observed by the TEM-EDS measurement. With increasing content of Yb, the curie temperature increased and the DC-bias capacitance change rate decreased under a DC field at 40 kV/cm. The optimal component showed a dielectric constant of 2200 and met the requirement of the X8R MLCCs application. Moreover, the outstanding highly accelerated life-time and higher grain boundary activation energy substantiated that Yb dopant prominently improved the reliability of dielectric materials of MLCCs. All these studies provide meaningful recommendations for the research on dielectric materials of high-performance, high-reliability base-metal MLCCs.  相似文献   

4.
《Ceramics International》2023,49(6):9042-9051
As the rate of application of multilayer ceramic capacitors (MLCCs) in small electronic devices increases, the use of the raw material barium titanate (BaTiO3) with a small particle size and excellent dielectric properties becomes needed. Due to the size effect, small-sized BaTiO3 generally has a cubic phase structure with a low dielectric constant, which limits its use in MLCCs. We report the preparation of small cubic phase Y-doped BaTiO3 (BYT) nanoparticles by a hydrothermal method and the preparation of highly dielectric tetragonal phase BYT ceramics based on this method. XRD and Raman analysis showed that the BYT nanoparticles are in substable cubic phases. The particle size of the BYT nanoparticles, measured by TEM, XRD, and BET, was approximately 35 nm. The dielectric properties of the BYT ceramics were tested by an impedance analyzer, and the dielectric constant of the BYT ceramics was 7547 when the Y3+ doping amount was 0.5 mol%. In addition, the substitution mechanism of Y3+ doping in BaTiO3 crystals was proposed from XPS and EPR analysis. The results demonstrate for the first time that the 50 nm cubic phase BaTiO3 powder can meet the needs of next-generation high-capacity MLCCs. This work provides a reference for small cubic phase BaTiO3 as a dielectric material for high-capacity MLCCs.  相似文献   

5.
《Ceramics International》2022,48(20):30020-30030
Excellent direct current (dc)-bias and reliability have become increasingly important for ultra-thin BaTiO3-based multilayer ceramic capacitors (MLCCs). Herein, X5R-MLCCs with a thickness of ~1 μm are fabricated using BaTiO3 with varied grain size. It is shown that the uniformity of the grain size plays an important impact on the direct current (dc)-bias and the reliability of ultra-thin MLCCs. Uniform grain size, which is indicative of good distribution of doping element contributes to improved temperature stability. By contrast, abnormal large grains induce reinforced space charge polarization. Chips with non-uniform grains exhibit dramatic dielectric constant change under dc-bias due to the high tetragonality and irreversible domain-wall motion. Weibull distribution and highly accelerated life test (HALT) reveal that non-uniform grains contain more oxygen vacancies supported by impedance spectra analysis at 300–450 °C. This study provides a feasible strategy to improve the dc-bias and the reliability of the ultra-thin MLCCs.  相似文献   

6.
In this work, the influence of starting particle size and sintering conditions on the microstructures and dielectric properties of BaTiO3-based ceramics coated with 0.3Bi(Zn1/2Ti1/2)O3-0.7BaTiO3 were investigated to reveal the core-shell structure by using high resolution transmission electron microscopy technique coupled with energy-dispersive spectrometer analysis. The ion-diffusion behavior plays a critical role in the formation and evolution of the core-shell structure and, therefore, significantly influences the dielectric properties. When using starting powders containing BaTiO3 particles larger than 100 nm in size and sintering for shorter dwelling times (0.5-2.0 hours), a core-shell structure could be formed and retained owing to the limited diffusion behavior, enabling BaTiO3-based ceramics to meet the X8R specification for multilayer ceramic capacitors applications at high temperatures. However, when using 80 nm BaTiO3 nanopowders and further extending the dwelling time to 6.0 hours, more driving energy was provided to prompt ion diffusion, which led to the compositional inhomogeneity becoming homogenized.  相似文献   

7.
The rapid development of high technology—such as space exploration and electric vehicles—urgently requires ultra-wide temperature multilayer ceramic capacitors (UWT MLCCs) to achieve reliable operation of electronic circuits in harsh environments. However, simultaneously achieving high dielectric permittivity, low dielectric loss, and ultrahigh thermal stability has been a major challenge for practical dielectric ceramics. The co-firing matching of the internal electrode and the dielectric ceramic is also an important factor that affects the reliability of UWT MLCCs. Herein, through multifaceted modification—i.e., composition design related to the modulation of the local polar nanoregions (PNRs) and optimizing device sintering in the context of the compatibility of the heterogeneous interface—these concerns have been well-addressed. A new lead-free dielectric system (1-x) (0.56Na0.5Bi0.5TiO3-0.14K0.5Bi0.5TiO3-0.3NaNbO3)-xCaZrO3 (NKBTNN-xCZ) dominated by P4bm PNRs was designed and corresponding UWT MLCCs with reliable Pt internal electrode interface bonding were fabricated by optimizing the sintering temperature. A record-high dielectric permittivity (εr = 839 ± 15 %) and low dielectric loss (tanδ ≤0.02) was achieved over an ultra-wide temperature range from -70 °C to 337 °C for NKBTNN-0.063CZ UWT MLCCs. This work suggests that multifaceted modification should be generalized for construction of high-performance UWT MLCCs.  相似文献   

8.
It has generally been believed that the reliability of BaTiO3-based multilayered ceramic capacitors (MLCCs) is mainly contributed by hydroxyl (OH), and the contribution of CO32− can be neglected. However, in this work, we demonstrated that the contributions of Ba/Ti ratio and CO32− play important roles in the delivering high reliability for BaTiO3-based MLCCs. The structure and performance of MLCC devices and ceramic chips based on BaTiO3 powders prepared by different approaches were studied. It is found that the intracrystalline pores in ceramics or MLCCs are mainly derived from the decomposition of BaCO3 during sintering, which has been demonstrated by ceramic derived from hydrothermal method powder and its modified powders. The point defects of Ba and Ti vacancies mainly originating from nonstoichiometric Ba/Ti rather than thermally stimulated have substantial influence on the migration of grain boundary that determines the grain size and whether the pores can be annihilated from the bulk material. Particularly, the Ti vacancies have a strong pinning effect and inhibit the migration of grain boundary effectively, due to their shorter migration distance comparing to Ba vacancies. Therefore, the synergetic effect of the second phase BaCO3 and point defects leads to the differences in the structure and performance.  相似文献   

9.
Lanthanum doped BaTiO3 powders were synthesized by the hydro-phase method at atmospheric pressure, which controls the uniformity and particle size of the ceramic powders. The effects of La3+ ions concentration on the microstructure and dielectric properties of BaTiO3 ceramics were studied. The results suggested that both the average grain size and dielectric constants (εr and εmax) of the ceramics decreased as the concentration of La3+ increased. The ceramic met the X8R specifications: La3+ ions concentration of 3 mol%, a permittivity of 2322, low dielectric loss of less than 0.6% at room temperature, and average grain size of about 260 nm.  相似文献   

10.
《Ceramics International》2023,49(13):22015-22021
Multilayer ceramic capacitors (MLCCs) had become an important component of many electronic devices on account of its miniaturization, high capacitance and reliability. To satisfy the requirements of MLCCs, the temperature–insensitivity and dielectric properties of the dielectric ceramics were urgent to be enhanced. In our work, (1–x)K0.5Na0.5NbO3xBi(Li0.5Nb0.5)O3 (abbreviated to KNN–xBLN) were successfully synthesized by traditional solid state reaction method. On the one hand, the doping BLN induced the diffused phase transition and broadened the dielectric anomaly peaks, which improved the temperature insensitivity of KNN-based ceramics. On the other hand, the nanosized grains and dense microscopy boosted the breakdown electric field. Ultimately, the KNN–0.175BLN samples presented the excellent dielectric properties with high dielectric constant (1735) and low dielectric loss (1.9%) at room temperature with a wide temperature stability range (–62 – 300 °C), which exhibited the wider temperature stability range than X9R specification. Meanwhile, the x = 0.175 samples also achieved a high recoverable energy storage density of 3.71 J/cm3 under the breakdown electric field of 360 kV/cm. The designed KNN–based dielectric materials were expected to be applicable to the energy storage capacitor with standed high operating temperature.  相似文献   

11.
The effects of Bi4Ti3O12 addition on the microstructure and dielectric properties of Mn-modified BaTiO3 were investigated to develop low temperature fired BaTiO3-based ceramics with stable temperature characteristics. The sintering temperature of Mn-doped BaTiO3 could be reduced to 1200 °C by adding more than 1 mol% Bi4Ti3O12. TEM results show an apparent core–shell structure with 2 mol% Bi4Ti3O12 addition. However, it was destroyed when the Bi4Ti3O12 content increased from 2 to 4 mol%. The permittivity decreased and the Curie temperature shifted to higher temperature when the Bi4Ti3O12 content increased from 0 to 3 mol%. The temperature characteristic of capacitance was very close to the EIA X8R specification when 2 mol% Bi4Ti3O12 was added due to the presence of the core–shell grain structure and raised Curie temperature. With adequate Bi4Ti3O12 addition, the BaTiO3-based system shows great potential for applications in EIA X8R-type multilayer ceramic capacitors.  相似文献   

12.
The effect of Y2O3 concentration on the dielectric properties of ceramic disc capacitors and multilayer capacitors containing 50 dielectric layers with an approximate thickness of 3 μm were investigated. The relative permittivity and temperature coefficient of capacity of multilayer capacitors at low and high applied field suggest that two types of microstructures formed, depending on yttrium doping concentration. Yttrium concentrations of 1.5-2.0 mol% yielded identical relative permittivities over a wide temperature range. The permittivities at Y concentrations of 2.6-3.0 mol% were also identical, but somewhat higher. The relative permittivity of ceramic disc capacitors of similar composition, determined from hysteresis loop measurements as function of applied field, was compared with field-dependent permittivity measurements on multilayer capacitors. The results indicate that polarization measurements on CDCs are a good indicator for the relative permittivity values of MLCCs.  相似文献   

13.
Temperature-stable dielectric properties have been developed in the 0.86 K0.5Na0.5NbO3-0.14SrZrO3 solid solution system. High dielectric permittivity (ε = 2310) with low loss sustained in a broad temperature range (−55–201 °C), which was close to that of the commercial BaTiO3-based high-temperature capacitors. Transmission electron microscopy with energy dispersive X-ray analysis directly revealed that submicron grains exhibited duplex core-shell structure. The outer shell region was similar to the target composition, whilst a slightly poor content of Sr and Zr presented in the core region. Based on Lichtenecker’s effective dielectric function analysis along with Lorentz fit of the temperature dependence of dielectric permittivity, a plausible mechanism explaining the temperature-stable dielectric response in present work was suggested. These results offer an opportunity to achieve the X8 R specification high-temperature capacitors in K0.5Na0.5NbO3 based materials.  相似文献   

14.
A facile tartaric acid assisted method using metatitanic acid, barium hydroxide and tartaric acid as starting materials is proposed to prepare tetragonal BaTiO3 fine powders. Owing to the ultrafine character of the as-formed BaCO3 with high chemical activity, and its arrangement coating the surface of intermediate TiO2 nanoscale needles, pure cubic phase BaTiO3 homogeneous powders with size of about 50 nm was obtained via calcining treatment at 650 ℃, which subsequently transformed as tetragonal BaTiO3 uniform powders with size of about 240 nm and high tetragonality (c/a=1.0095) after calcining treatment at 1050 ℃. The BaTiO3 ceramic prepared from the BaTiO3 uniform powders displayed much improvement performances with high permittivity of about 5980 and low dielectric loss of about 0.014 at room temperature in comparison to the BaTiO3 ceramic prepared respectively from the BaTiO3 synthesized via a traditional solid-state method, and commercial BaTiO3, suggesting it’s compatible in application of MLCCs with high performance.  相似文献   

15.
BaTiO3 is a typical ferroelectric material with high relative permittivity and has been used for various applications, such as multilayer ceramic capacitors (MLCCs). With the tendency of miniaturization of MLCCs, the thin films of BaTiO3 have been required. In this work, BaTiO3 thin films have been deposited on Pt-coated Si substrates by RF magnetron sputtering under different deposition conditions. The films deposited at the substrate temperature from 550 °C–750 °C show a pure tetragonal perovskite structure. The films deposited at 550 °C–625  °C exhibit (111) preferential orientation, and change to (110) preferential orientation when deposited above 650 °C. The film morphologies vary with working pressure and substrate temperature. The film deposited at 625 °C and 4.5 Pa has the relative permittivity of 630 and the loss tangent of 2% at 10 kHz.  相似文献   

16.
The thin film of copper, chromium and titanium as end-termination studies were performed on multilayer ceramic capacitors (MLCCs) based on BaTiO3 ceramic with nickel internal electrodes. A green sheet was prepared by tape casting using the X7R/BME powders. Nickel paste was attached to the green sheet as an internal electrode. After lamination, the green chips were sintered at 1300 °C for 2 h, then the external electrodes were sputtered as thin films for end-termination. There is no extra curing process, so that thermal shock of the MLCCs is reduced. To improve the adhesion between thin film end-termination and dielectric body, chromium and titanium were applied as media in this study. The mechanical and electrical properties of the MLCCs were investigated subsequently. The results showed that end-termination with chromium/copper has good performances on electrical and mechanical properties of MLCC, compared to conventional end-termination.  相似文献   

17.
《Ceramics International》2016,42(13):14627-14634
To improve multilayer ceramic capacitors (MLCCs), thinner dielectric layers are necessary. To achieve this goal, both grain size and uniformity of the MLCC particles must be controlled effectively. In this study, the core-shell structure of submicron-sized multi-function ceramic capacitors powder was synthesized using a novel precipitation route, which controls both dispersion and particle size of BaZr0.1Ti0.9O3 and BaZr0.1Ti0.9O3@Al2O3 particles. In this paper, we investigate the effect of Al2O3 coating on the microstructure and the dielectric properties of BaZr0.1Ti0.9O3. We found that both average grain size and maximum dielectric constant (εmax) of the ceramics decrease with increasing concentration of Al2O3. Our results demonstrate that fine-grained ceramic materials can meet the specifications of the Electronic Industries Alliance Y5V with a concentration of Al2O3-coated of 0.25 mol percent, a permittivity of 3393 at room temperature, and an average particle size of about 400 nm.  相似文献   

18.
A stoichiometric and 2 mol% Ba deficient samples in the formulation 0.5BaTiO3‐0.5BiMg1/2Ti1/2O3 (BT‐BMT) were processed via a mixed oxide solid‐state route. The deficient sample exhibited a high relative permittivity (2100±15%) over the temperature range 90‐450°C and a low dielectric loss (tanδ < 0.01), maintained up to high temperature (430°C). The samples exhibited intrinsic conduction mechanism and showed an n‐type character. By introducing 2 mol% Ba vacancies, a dramatic influence on the dielectric loss was observed which was mainly associated with the trapping of electrons by barium‐oxygen vacancy pair associated with the intentionally produced cation vacancies. Thus, control of composition by creating deficiency allows fine tuning of the dielectric properties of BT‐BMT ceramics for applications in high‐temperature multilayered ceramic capacitors.  相似文献   

19.
The potential for using aerosol deposition (AD) as an alternative fabrication method to the conventional polymer composite process for embedded capacitors was examined. In order to achieve a high relative dielectric permittivity, BaTiO3-polytetrafluoroethylene (PTFE) composite thick films were attempted by AD at room temperature. For the high dielectric constant, the BaTiO3-PTFE composite films grown by AD should satisfied the following two critical conditions: a reduced decrement in ceramic particle size and a relieved distortion of the crystal structure. However, the relative permitivity of the composite films was too low compared with that of the BaTiO3 films grown by AD. By predicting the dielectric constant in several composite models using the Hashin-Shtrikman bounds theory and 3-dimenstional (3-D) electrostatic simulation, we confirmed that the connectivity between ceramic particles is a highly critical factor for achieving a high dielectric constant in composite films.  相似文献   

20.
An ultra‐wide temperature stable ceramic system based on (1?x) [0.94(0.75Bi0.5Na0.5TiO3?0.25NaNbO3)?0.06BaTiO3]?xCaZrO3 (CZ100x) is developed for capacitor application in this study. All samples exhibit characteristics of pseudocubic structures in XRD patterns. With CaZrO3 addition, the coupling effect of polar nanoregions (PNRs) is weakening, leading to greatly improved temperature stability of dielectric properties. Among all samples, the most attractive properties are obtained in the composition of CZ10 at <15% variation in dielectric permittivity spanning from ?55°C to 400°C and lower than 0.02 of dielectric loss of between ?60°C and 300°C, accompanied by high DC resistivity (107 Ω m at 300°C, calculated by fitting Jonscher's power law). Furthermore, tentative multilayer ceramic capacitors (MLCCs) composed of CZ10 dielectric and Ag:Pd (70:30) internal electrode layers were fabricated by tape casting and cofiring processes. Temperature‐stable dielectric property in formation of MLCC was successfully realized, with small ΔC/C25°C (<15%) and loss factor (≤ 0.02) between ?55°C and 340°C. Meanwhile, CZ10‐based MLCC showed temperature‐insensitive energy storage density of 0.31?0.35 J/cm3 and high‐energy efficiency of above 77% at 120 kV/cm in the range of ?55 to 175°C. All of these exhibit wonderful temperature‐stable dielectric properties and indicate the promising future of CZ10 dielectric as high‐temperature ceramic capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号