首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gillespite-structured MCuSi4O10 (M = Ba1-xSrx, Sr1-xCax) ceramics with tetrahedral structure (P4/ncc) were prepared by solid-state reaction method. X-ray diffraction and thermogravimetry with differential scanning calorimetry (TG-DSC) were employed to study the phase synthesis process of BaCuSi4O10. Pure BaCuSi4O10 phase was obtained at 1075°C and decomposed into BaSiO3, BaCuSi2O6, and SiO2 when calcined at 1200°C. The relationships between the crystal structure and microwave dielectric properties of MCuSi4O10 ceramics were revealed based on the Rietveld refinement and P-V-L complex chemical bond theory. The dielectric constant (εr) decreased linearly with decreasing total bond susceptibility and ionic polarizability. Quality factor (Q × f) was closely dependent on bond strength and lattice energy. The temperature coefficient of resonant frequency (τf) was controlled by the stability of [CuO4]6− plane in MCuSi4O10. Optimum microwave dielectric properties were obtained for SrCuSi4O10 when sintered at 1100°C for 3 hours with a εr of 5.59, a Q × f value of 82 252 GHz, and a τf of −41.34 ppm/°C. Thus, SrCuSi4O10 is a good candidate for millimeter-wave devices.  相似文献   

2.
《Ceramics International》2020,46(12):19996-20003
Olivine−type structure microwave dielectric ceramics LiYbSiO4 with near-zero τf were fabricated by solid-state reaction process for the first time. The relationships among structural parameters, sintering behavior, vibrational modes and microwave dielectric properties for the ceramics were studied. The variation in εr could be correlated with Raman shift. The variation in Q×f values was inversely correlated to FWMH and average cation covalency. The τf values were explained with the bond valence sum of cations. Single phase LiYbSiO4 ceramics could be obtained at the range of 1100–1140 °C and showed promising microwave dielectric properties with εr = 7.36 – 7.42, Q×f = 19081 – 25276 GHz and τf = +4.52 – +8.03 ppm/°C.  相似文献   

3.
Nb-doped and Y-deficient yttrium aluminum garnet ceramics were designed and synthesized using the solid-state reaction method according to the chemical equation Y3?xAl5NbxO12+x (0 ≤ x ≤ 0.16). The phase composition, sintering behavior, microstructure, and microwave dielectric properties were investigated as functions of the composition and sintering temperature. A single-phase solid solution of yttrium aluminum garnet structure formation was observed in the range of 0 ≤ x ≤ 0.1. Further increments in x prompted the precipitation of the YNbO4 secondary phase at the grain boundary of Y3Al5O12. The complexity of the phase composition degrades the micromorphology and dielectric properties of the ceramics to varying degrees. Transmission electron microscopy results show that the lattice exhibits additional symmetry, which is closely related to the ultrahigh Q×f values of the ceramics. Effectively improving the sintering behaviour and suppressing the secondary phase by simultaneously doping with Nb5+ and reducing the yttrium stoichiometry. Finally, excellent microwave dielectric properties of εr ~ 10.99, Q×f ~ 280,387 GHz (13.5 GHz), and τf ~ ? 34.7 ppm/°C can be obtained in x = 0.1 (Y2.9Al5Nb0.1O12.1) sintered at 1700 °C for 6 h.  相似文献   

4.
Two low temperature sintered NaPb2B2V3O12 (B?=?Mg, Zn) ceramics with garnet structure were synthesized through conventional solid state reaction route and their crystal structure and microwave dielectric properties were investigated for the first time. Rietveld refinements of XRD patterns show both the compounds belong to cubic symmetry with space group Ia-3d. Observed number of Raman bands and group theoretical predictions also confirm cubic symmetry with space group Ia-3d for both NPMVO and NPZVO. At the optimum sintering temperature of 725?°C NPMVO has a relative permittivity of 20.6?±?0.2, unloaded quality factor (Quxf) of 22,800?±?1500?GHz (f?=?7.7?GHz) and temperature coefficient of resonant frequency +25.1?±?1?ppm/°C while NPZVO has relative permittivity of 22.4?±?0.2, Quxf of 7900?±?1500?GHz (f?=?7.4?GHz) and near zero temperature coefficient of resonant frequency of -6?±?1?ppm/°C at 650?°C. The relative permittivity of the compounds is inversely related to the corresponding Raman shifts.  相似文献   

5.
Structure-property relationships of Y2MgTiO6, a type of double perovskite materials, were investigated systematically. Rietveld refinement of XRD patterns confirmed that Y2MgTiO6 belongs to the P21/c space group and has a structure analogous to that of monoclinic Dy2MgTiO6. In accordance with the observed number of vibrational bands and group theoretical predictions, O and Y ions at the 4e site dominated the Raman peaks. The IR reflectivity spectrum indicated that the major contributions to the relative permittivity and intrinsic loss were modes lower than 500 cm−1. The measured relative permittivity closely approached the calculated values determined according to P-V-L theory, the Clausius-Mossotti equation and IR fitted results. The larger bond energy for Mg–O bonds than for Ti–O bonds corresponds to a more stable octahedron of [MgO6], as verified by the octahedral distortion. Satisfactory microwave dielectric properties of Y2MgTiO6 ceramics were as follows: εr = 20.4 ± 0.8, Q × = 42 060 ± 310 GHz, τ= −52 ± 3 ppm/°C, sintered at 1450°C.  相似文献   

6.
Gd2Mo3O12 ceramics were prepared using the traditional solid-phase reaction method. All samples were found to possess an orthorhombic crystal structure with a space group of Pba2, as revealed by refined XRD results. The ceramic sintered at 1000 °C exhibited a high relative density of 96.95 % and superior microwave dielectric properties, including εr of 9.42 ± 0.05,  × f of 49258 ± 1200 GHz, and τf of −71.8 ± 0.7 ppm/°C. The results suggest a correlation between an increase in εr and higher relative density, and a more compact and uniform microstructure can lead to higher  × f value. Chemical bonding theories and Raman spectroscopy analysis reveal that Mo-O bonds, rather than Gd-O bonds, dominate the microwave dielectric properties. Furthermore, the εr of Gd2Mo3O12 ceramic was closely related to bond ionicity, while  × f and τf were mainly determined by lattice energy and bond energy, respectively.  相似文献   

7.
The crystal structure and microwave dielectric properties of Zn3-xCux(BO3)2 (x = 0–0.12) ceramics prepared via a traditional solid-state reaction method were investigated by means of X-ray diffraction (XRD) utilizing the Rietveld refinement, complex chemical bond theory, and Raman spectroscopy. XRD showed that all samples were single phase. The samples maintained a low permittivity, even at higher Cu2+ contents, which is conducive to the shortening of signal delay time, and intimately related to the average bond ionicity and Raman shift. Moreover, proper Cu2+ substitution greatly reduced the dielectric loss associated with the lattice energy. Cu2+ entering the lattice optimized the temperature coefficient of resonance frequency (τf) values and improved the temperature stability of samples by affecting the bond energy. Optimal microwave dielectric properties were: εr = 6.64, Q × f = 160,887 GHz, τf = ?42.76 ppm/°C for Zn2.96Cu0.04(BO3)2 ceramics sintered at 850 °C for 3 h, which exhibited good chemical compatibility with silver and are therefore good candidate materials for Low temperature co-fired ceramic applications.  相似文献   

8.
A novel series of rock salt structured (1-x)Li2ZrO3-xMgO ceramics were prepared via the conventional solid state method. The tetragonal-cubic phase transition can be observed in the case of 0.5?≤?x?≤?0.6, which has been testified by the results of XRD and SEM-EDS. Relatively dense and homogeneous microstructure can be obtained for all the compositions sintered at 1500?°C. With the x value increasing from 0.5 to 0.8, the relative permittivity linearly decreases from 16.50 to 12.65, and the τf value decreases from ~?10?ppm/°C to ~?35?ppm/°C. The addition of MgO stabilizes the crystal structure and increases the bond energies in Li2ZrO3-MgO system, so there is an upward tendency in Q·f values from ~77,000?GHz to ~166,000?GHz. Typically, the Li2Mg4ZrO7 ceramics sintered at 1500?°C possesses excellent properties with εr?=?12.65, Q·f?=?165,924?GHz and τf=-34.66?ppm/°C, which makes these materials good candidates for microwave devices.  相似文献   

9.
The Li2MgTi1-x(Mg1/3Nb2/3)xO4 (0?≤x?≤?0.5) ceramics were prepared by the conventional solid-state method. The relationship among phase composition, substitution amount and microwave dielectric properties of the ceramics was symmetrically investigated. All the samples possess the rock salt structure with the space group of Fm-3m. As the x value increases from 0 to 0.5, the dielectric constant linearly decreases from 16.75 to 15.56, which can be explained by the variation of Raman spectra and infrared spectra. The Q·f value shows an upward tendency in the range of 0?≤x?≤?0.3, but it then decreases when x?>?0.3. In addition, the temperature coefficient of resonant frequency (τf) is shifted toward zero with the increasing (Mg1/3Nb2/3)4+ addition. By comparison, the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr=?16.19, Q·f =?160,000?GHz and τf =??3.14?ppm/°C.  相似文献   

10.
In this study, we synthesized BaZnSi3O8-based compounds with monoclinic structures (P21/a) using a solid-state method. The crystal structure, phase composition, and microwave dielectric properties of BaZnSi3O8-based ceramics were systematically investigated systematically. X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images proved that the maximum solubility of BaZn1-xMgxSi3O8 ranged between 0.3 and 0.4. Rietveld refinement and Phillips–Van Vechten–Levine complex chemical bond theory were used to illustrate the relationship between the microwave dielectric performance and lattice parameters. To further improve the properties, we substituted Ba2+ with Sr2+ in BaZn0.8Mg0.2Si3O8. Ba1-ySryZn0.8Mg0.2Si3O8 remained in a single-phase as y increased from 0 to 1.0. We achieved thermal stability of the resonance frequency of the BaZnSi3O8-based ceramics by adjusting TiO2 to form composite ceramics. After sintering at 1020°C for 5 h, excellent microwave dielectric properties with εr = 7.44, Q×f = 57,400 GHz, and τf = − 0.2 ppm/°C were realized in the SrZn0.8Mg0.2Si3O8+8 wt %TiO2 system.  相似文献   

11.
HBO2-II ceramics were prepared by cold sintering with 10wt% dehydrated ethanol as the transient liquid phase. When the processing temperature is 30°C, the relative density of the mechanically robust HBO2-II ceramics increases from 77.5% to 84.5% with increasing the uniaxial pressure from 200 to 500 MPa. It changes less than 0.2% for higher pressure up to 700 MPa. Under a constant uniaxial pressure of 500 MPa, the relative density further increases to 94.7% for the processing temperature of 120°C. HBO2-I is observed as the secondary phase when the processing temperature is 150°C. In comparison, the compacts prepared in the absence of ethanol are fragile, and the relative densities are 78.5%-84.5% for the processing temperatures of 30-120°C and uniaxial pressure of 500 MPa. It is indicated that ethanol promotes the densification significantly through the dissolution-precipitation mechanism. The permittivity increases with increasing the processing temperature, while the Qf value decreases. The optimal properties with the relative density of 94.7%, εr = 4.21, Qf = 47 500 GHz, and τf = −70.0 ppm/°C were obtained in the single-phase HBO2-II ceramics cold sintered at 120°C under 500 MPa for 10 minutes. The relative density and Qf value are significantly higher than those of the HBO2-II ceramic prepared by sintering the H3BO3 compact at 180°C for 2 hours (70.3% and 32 700 GHz, respectively). The results indicate that the nonaqueous solvent can also be used as the transient liquid phase for cold sintering, so that more materials that are unstable or insoluble in water can be densified by this method.  相似文献   

12.
Ca3SnSi2-xGexO9 (0 ≤ x ≤ 0.8) and (1–y) Ca3SnSi1.6Ge0.4O9 – y CaSnSiO5 – 2 wt% LiF (y = 0.4 and 0.5) microwave dielectric ceramics were prepared by traditional solid-state reaction through sintering at 1250°C–1425°C for 5 h and at 875°C for 2 h, respectively. Ge4+ replaced Si4+, and Ca3SnSi2-xGexO9 (0 ≤ x ≤ 0.4) solid solutions were obtained. At 0.1 ≤ x ≤ 0.4, the Ge4+ substitution for Si4+ decreased the sintering temperature of Ca3SnSi2-xGexO9 from 1425 to 1300°C, the SnO6 octahedral distortions, and the average CaO7 decahedral distortions, which affected the τf value. The large average decahedral distortions corresponded with nearer-zero τf values at Ca3SnSi2-xGexO9 (0.1 ≤ x ≤ 0.4) ceramics. The τf value and sintering temperature of Ca3SnSi2-xGexO9 (x = 0.4) ceramic were adjusted to near-zero by CaSnSiO5 and decreased to 875°C upon the addition of 2 wt% LiF. The (1 – y) Ca3SnSi1.6Ge0.4O9 – y CaSnSiO5 – 2 wt% LiF (y = 0.5) ceramic sintered at 875°C for 2 h exhibited good microwave dielectric properties: εr = 10.3, Q × = 14 300 GHz (at 12.2 GHz), and τf = ‒5.8 ppm/°C.  相似文献   

13.
Microwave dielectric properties of corundum-structured Mg4Ta2O9 ceramics were investigated as a function of sintering temperatures by an aqueous sol–gel process. Crystal structure and microstructure were examined by X-ray diffraction (XRD) technique and field emission scanning electron microscopy (FE-SEM). Sintering characteristics and microwave dielectric properties of Mg4Ta2O9 ceramics were studied as a function of sintering temperature from 1250 °C to 1450 °C. With increasing sintering temperature, the density, εr and Qf values increased, saturating at 1300 °C with excellent microwave properties of εr=11.9, Qf=195,000 GHz and τf=?47 ppm/°C. Evaluation of dielectric properties of Mg4Ta2O9 ceramics were also analyzed by means of first principle calculation method and ionic polarizability theory.  相似文献   

14.
AgPb2B2V3O12 (B = Mg, Zn) ceramics with low sintering temperature were synthesized via the conventional solid-state reaction route. Rietveld refinements of the X-ray diffraction patterns confirm cubic symmetry with space group . The number of observed vibrational modes and those predicted by group theoretical calculations also confirm the space group. At the optimum sintering temperature of 750°C/4 hours, AgPb2Mg2V3O12 has a relative permittivity of 23.3 ± 0.2, unloaded quality factor () of 26 900 ± 500 GHz (), and temperature coefficient of resonant frequency of 19.3 ± 1 ppm/°C, while AgPb2Zn2V3O12 has the corresponding values of 26.4 ± 0.2, 28 400 ± 500 GHz () and –18.4 ± 1 ppm/°C at 590°C/4 hours. Microwave dielectric properties of a few reported garnets and Pb2AgB2V3O12 (B = Mg, Zn) ceramics were correlated with their intrinsic characteristics such as the Raman shifts as well as width of A1g Raman bands. Higher quality factor was obtained for lower full width at half-maxima (FWHMs) values of A1g modes. The increase in B-site bond valence contributes to high and low |τf| with the substitution of Zn2+ by Mg2+. Furthermore, the high ionic polarizability and unit cell volume with Zn2+substitution contribute to increased relative permittivity.  相似文献   

15.
The bond characteristics, Raman spectroscopy, and microwave dielectric properties of Zn3-xLi2x(BO3)2 ceramics prepared by solid-state reaction method were investigated. According to the complex chemical bond theory, the bond ionicity and lattice energy of the B–O bond were proved to contributed more to the electric polarization and phase structure stability than that of A-site bond. Thus, the B–O bond had a dominant effect on the dielectric constant and Q × f values. The optimization of the τf value can be attributed to the bond valence. Moreover, the shift and full width at half maximum of the Raman peak were closely related to the dielectric constant and Q × f values, respectively. On the whole, Li+ substitution contributed greatly to improve the temperature stability and reducing the dielectric loss of Zn3-xLi2x(BO3)2 ceramics. Additionally, Zn2.99Li0.02(BO3)2 ceramics sintered at 850 °C exhibited satisfactory microwave dielectric properties of εr=6.59, Q × f=122,030 GHz, τf=−76.9 ppm/°C, and had good chemical compatibility with silver.  相似文献   

16.
MSO4 (M = Ca, Sr, Ba) ceramics with relative densities exceeding 96% were prepared by solid-state sintering at low sintering temperatures of 625–875°C, and their structures and microwave dielectric properties at 10–19 GHz were characterized. MSO4 ceramics crystallized in orthorhombic symmetry with the space groups of Amma for CaSO4 and Pnma for SrSO4 and BaSO4. The optimal microwave dielectric properties were obtained with εr = 5.85, Qf = 57 000 GHz, τf,W = −98.8 ppm/°C for CaSO4, εr = 10.95, Qf = 15 500 GHz, τf,W = 101.6 ppm/°C for SrSO4, and εr = 9.42, Qf = 38 200 GHz, τf,W = −4.7 ppm/°C for BaSO4. The increased εr and τf,W while decreased Qf value in the order of CaSO4, BaSO4, and SrSO4 were attributed to the enhanced rattling effect of M2+. Besides, the temperature dependence of τf was weak for CaSO4 and BaSO4, whereas much stronger for SrSO4. As most low-εr microwave dielectric ceramics are of large negative τf, the near-zero τf of BaSO4 and positive τf of SrSO4 are rare, indicating they are potential candidates for millimeter-wave communication as a temperature-stable dielectric ceramic and a compensator for tuning negative τf to near-zero, respectively.  相似文献   

17.
《Ceramics International》2022,48(5):6218-6224
Gallium-based SrREGa3O7 (RE = La, Pr) melilite ceramics were prepared and selected to modify their microwave dielectric properties. Sintered at 1425 °C for 6 h, SrLaGa3O7 (SLGO) and SrPrGa3O7 (SPGO) ceramics exhibited high relative densities of 98.33 and 95.23%, low εr values of 11.8 and 10.9, Q×f values of 32,500 GHz (at 12.1 GHz) and 26,400 GHz (at 12.7 GHz), negative τf values of ?32 and ?54 ppm/°C. As a compensator, CaTiO3 can tune the τf values of SLGO and SPGO to near zero (+2 and ?4 ppm/°C). In SrREGa3O7 melilite ceramics, the εr and τf values are mainly dependent on ionic polarizability, crystal structure and the “rattling” effect. The micromorphology, XPS, Raman spectrum and A-site bond valence (VRE) of SrREGa3O7 (RE = La, Pr) microwave dielectric ceramics have also been comprehensively reported.  相似文献   

18.
19.
The LiNiPO4 ceramic for the LTCC technology was prepared via the traditional solid-state reaction route and its dielectric properties were investigated for the first time. The best dielectric properties of LiNiPO4 ceramics with a εr of 7.18, Q×f value of 27,754?GHz and τf of ?67.7?ppm/°C were obtained in samples sintered at 825?°C for 2?h. Rietveld refinement was firstly employed to study the crystal structure and dielectric properties of LiNiPO4 ceramics. Unfortunately, the relatively large negative τf was unfavorable to practical applications. Therefore, we introduced TiO2, which possessed a considerable positive τf, to obtain a desired τf value. The prepared LiNiPO4 ceramics with 15?wt% TiO2 sintered at 900?°C for 2?h exhibited excellent dielectric properties of εr~11.49, Q×f~10,792?GHz, τf~?2.8?ppm/°C. The Ag co-fired experiments confirmed the excellent chemical compatibility with LiNiPO4-TiO2 ceramics which might be potential dielectric LTCCs for high frequency applications.  相似文献   

20.
《Ceramics International》2019,45(11):14160-14166
The CaMg1-xMnxSi2O6(x = 0–0.08)ceramics were reported here for the first time. The relationships among structural characteristics, vibrational modes and dielectric properties for the ceramics were researched based on complex chemical bond theory and Raman vibrational spectroscopy. The formation of a single phase with clinopyroxene structure when x = 0 to 0.08 was detected by X-ray diffraction. The monotonous increase of εr is ascribed to the average bond covalency, polarizability and Raman shift. The Q×f value is influenced by total lattice energy and full width at half maximum of Raman spectra which are both connected with the intrinsic loss. The variation of τf is related to thermal expansion coefficient and M1-site bond valence. Furthermore, the CaMg0.98Mn0·02Si2O6 ceramic sintered at 1300 °C possessed optimal microwave dielectric properties of εr = 8.01, Q×f = 83469 GHz and τf = −45.27 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号