首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of the Escherichia coli chaperonin GroEL with N-ethylmaleimide at residue Cys138 affects the structural and functional integrity of the complex. Nucleotide affinity and ATPase activity of the modified chaperonin are increased, whereas cooperativity of ATP hydrolysis and affinity for GroES are reduced. As a consequence, release and folding of substrate proteins are strongly impaired and uncoupled from ATP hydrolysis in a temperature-dependent manner. Folding of dihydrofolate reductase at 25 degrees C becomes dependent on GroES, whereas folding of typically GroES-dependent proteins is blocked completely. At 37 degrees C, GroES binding is restored to normal levels, and the modified GroEL regains its chaperone activity to some extent. These results assign a central role to the intermediate GroEL domain for transmitting conformational changes between apical and central domains, and for coupling ATP hydrolysis to productive protein release.  相似文献   

2.
The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATPgammaS) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding.  相似文献   

3.
An unresolved key issue in the mechanism of protein folding assisted by the molecular chaperone GroEL is the nature of the substrate protein bound to the chaperonin at different stages of its reaction cycle. Here we describe the conformational properties of human dihydrofolate reductase (DHFR) bound to GroEL at different stages of its ATP-driven folding reaction, determined by hydrogen exchange labeling and electrospray ionization mass spectrometry. Considerable protection involving about 20 hydrogens is observed in DHFR bound to GroEL in the absence of ATP. Analysis of the line width of peaks in the mass spectra, together with fluorescence quenching and ANS binding studies, suggest that the bound DHFR is partially folded, but contains stable structure in a small region of the polypeptide chain. DHFR rebound to GroEL 3 min after initiating its folding by the addition of MgATP was also examined by hydrogen exchange, fluorescence quenching, and ANS binding. The results indicate that the extent of protection of the substrate protein rebound to GroEL is indistinguishable from that of the initial bound state. Despite this, small differences in the quenching coefficient and ANS binding properties are observed in the rebound state. On the basis of these results, we suggest that GroEL-assisted folding of DHFR occurs by minor structural adjustments to the partially folded substrate protein during iterative cycling, rather than by complete unfolding of this protein substrate on the chaperonin surface.  相似文献   

4.
The chaperonins GroEL and GroES of Escherichia coli facilitate protein folding in an adenosine triphosphate (ATP)-dependent reaction cycle. The kinetic parameters for the formation and dissociation of GroEL-GroES complexes were analyzed by surface plasmon resonance. Association of GroES and subsequent ATP hydrolysis in the interacting GroEL toroid resulted in the formation of a stable GroEL:ADP:GroES complex. The complex dissociated as a result of ATP hydrolysis in the opposite GroEL toroid, without formation of a symmetrical GroEL:(GroES)2 intermediate. Dissociation was accelerated by the addition of unfolded polypeptide. Thus, the functional chaperonin unit is an asymmetrical GroEL:GroES complex, and substrate protein plays an active role in modulating the chaperonin reaction cycle.  相似文献   

5.
As a basic principle, assisted protein folding by GroEL has been proposed to involve the disruption of misfolded protein structures through ATP hydrolysis and interaction with the cofactor GroES. Here, we describe chaperonin subreactions that prompt a re-examination of this view. We find that GroEL-bound substrate polypeptide can induce GroES cycling on and off GroEL in the presence of ADP. This mechanism promotes efficient folding of the model protein rhodanese, although at a slower rate than in the presence of ATP. Folding occurs when GroES displaces the bound protein into the sequestered volume of the GroEL cavity. Resulting native protein leaves GroEL upon GroES release. A single-ring variant of GroEL is also fully functional in supporting this reaction cycle. We conclude that neither the energy of ATP hydrolysis nor the allosteric coupling of the two GroEL rings is directly required for GroEL/GroES-mediated protein folding. The minimal mechanism of the reaction is the binding and release of GroES to a polypeptide-containing ring of GroEL, thereby closing and opening the GroEL folding cage. The role of ATP hydrolysis is mainly to induce conformational changes in GroEL that result in GroES cycling at a physiologically relevant rate.  相似文献   

6.
The chaperonin-containing TCP-1 complex (CCT) is a heteromeric particle composed of eight different subunits arranged in two back-to-back 8-fold pseudo-symmetric rings. The structural and functional implications of nucleotide binding to the CCT complex was addressed by electron microscopy and image processing. Whereas ADP binding to CCT does not reveal major conformational differences when compared with nucleotide-free CCT, ATP binding induces large conformational changes in the apical and equatorial domains, shifting the latter domains up to 40 degrees (with respect to the inter-ring plane) compared with 10 degrees for nucleotide-free CCT or ADP-CCT. This equatorial ATP-induced shift has no counterpart in GroEL, its prokaryotic homologue, which suggests differences in the folding mechanism for CCT.  相似文献   

7.
Electron microscopy of the tetradecameric double-ring complex of GroEL reveals a four-layered structure, indicating that the 58 kDa subunits are composed of two major morphological domains. We have used immuno-electron microscopy to assign these domains to the corresponding segments of the GroEL sequence. Upon chemical modification of GroEL with N-ethylmaleimide, protease treatment in the presence of ATP or ADP generates GroEL fragments of 15 kDa (N15; residues 1-141) and 40 kDa (C40; residues 153-531). As visualized by scanning transmission electron microscopy, affinity-purified antibodies directed against C40 recognize the outer layers, whereas antibodies against N15 interact with the equatorial portions of the GroEL double-ring. Thus, the two major domains of the subunits in the chaperonin complex are arranged in the order C40-N15:N15-C40. The single-ring chaperonin co-factor GroES interacts with the C40 domain while the ATP-binding site of GroEL is probably close to the junction between N15 and C40.  相似文献   

8.
Interactions of the DnaK (Hsp70) chaperone from Escherichia coli with substrates are controlled by ATP. Nucleotide-induced changes in DnaK conformation were investigated by monitoring changes in tryptic digestion pattern and tryptophan fluorescence. Using nucleotide-free DnaK preparations, not only the known ATP-induced major changes in kinetics and pattern of proteolysis but also minor ADP-induced changes were detected. Similar ATP-induced conformational changes occurred in the DnaK-T199A mutant protein defective in ATPase activity, demonstrating that they result from binding, not hydrolysis, of ATP. N-terminal sequencing and immunological mapping of tryptic fragments of DnaK identified cleavage sites that, upon ATP addition, appeared within the proposed C-terminal substrate binding region and disappeared in the N-terminal ATPase domain. They hence reflect structural alterations in DnaK correlated to substrate release and indicate ATP-dependent domain interactions. Domain interactions are a prerequisite for efficient tryptic degradation as fragments of DnaK comprising the ATPase and C-terminal domains were highly protease-resistant. Fluorescence analysis of the N-terminally located single tryptophan residue of DnaK revealed that the known ATP-induced alteration of the emission spectrum, proposed to result directly from conformational changes in the ATPase domain, requires the presence of the C-terminal domain and therefore mainly results from altered domain interaction. Analyses of the C-terminally truncated DnaK163 mutant protein revealed that nucleotide-dependent interdomain communication requires a 15-kDa segment assumed to constitute the substrate binding site.  相似文献   

9.
The human multidrug transporter (MDR1 or P-glycoprotein) is an ATP-dependent cellular drug extrusion pump, and its function involves a drug-stimulated, vanadate-inhibited ATPase activity. In the presence of vanadate and MgATP, a nucleotide (ADP) is trapped in MDR1, which alters the drug binding properties of the protein. Here, we demonstrate that the rate of vanadate-dependent nucleotide trapping by MDR1 is significantly stimulated by the transported drug substrates in a concentration-dependent manner closely resembling the drug stimulation of MDR1-ATPase. Non-MDR1 substrates do not modulate, whereas N-ethylmaleimide, a covalent inhibitor of the ATPase activity, eliminates vanadate-dependent nucleotide trapping. A deletion in MDR1 (Delta amino acids 78-97), which alters the substrate stimulation of its ATPase activity, similarly alters the drug dependence of nucleotide trapping. MDR1 variants with mutations of key lysine residues to methionines in the N-terminal or C-terminal nucleotide binding domains (K433M, K1076M, and K433M/K1076M), which bind but do not hydrolyze ATP, do not show nucleotide trapping either with or without the transported drug substrates. These data indicate that vanadate-dependent nucleotide trapping reflects a drug-stimulated partial reaction of ATP hydrolysis by MDR1, which involves the cooperation of the two nucleotide binding domains. The analysis of this drug-dependent partial reaction may significantly help to characterize the substrate recognition and the ATP-dependent transport mechanism of the MDR1 pump protein.  相似文献   

10.
The 60 kDa molecular chaperones (chaperonins) are high molecular weight protein complexes having a characteristic double-ring toroidal shape; they are thought to aid the folding of denatured or newly synthesized polypeptides. These proteins exist as two functionally similar, but distantly related families, one comprising the bacterial and organellar chaperonins and another (the so-called CCT-TRiC family) including the chaperonins of the archaea and the eukaryotes. Although some evidence exists that the archaeal chaperonins are implicated in protein folding, much remains to be learned about their precise cellular function. In this work, we report that the chaperonin of the thermophilic archaeon Sulfolobus solfataricus is an RNA-binding protein that interacts specifically in vivo with the 16S rRNA and participates in the maturation of its 5' extremity in vitro. We further show that the chaperonin binds RNA as the native heterooligomeric complex and that RNA binding and processing are inhibited by ATP. These results agree with previous reports indicating a role for the bacterial/organellar chaperonins in RNA protection or processing and suggest that all known chaperonin families share specific and evolutionarily ancient functions in RNA metabolism.  相似文献   

11.
We propose a mechanism for the role of the bacterial chaperonin GroEL in folding proteins. The principal assumptions of the mechanism are (i) that many unfolded proteins bind to GroEL because GroEL preferentially binds small unstructured regions of the substrate protein, (ii) that substrate protein within the cavity of GroEL folds by the same kinetic mechanism and rate processes as in bulk solution, (iii) that stable or transient complexes with GroEL during the folding process are defined by a kinetic partitioning between formation and dissociation of the complex and the rate of folding and unfolding of the protein, and (iv) that dissociation from the complex in early stages of folding may lead to aggregation but dissociation at a late stage leads to correct folding. The experimental conditions for refolding may play a role in defining the function of GroEL in the folding pathway. We propose that the role of GroES and MgATP, either binding or hydrolysis, is to regulate the association and dissociation processes rather than affecting the rate of folding.  相似文献   

12.
Carbamoyl phosphate synthetase (CPS) catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of MgATP. The X-ray crystal structure of the enzyme has revealed that the two nucleotide binding sites are separated by approximately 35 A. Isotopic oxygen exchange of 18O and 16O between solvent water and [13C]bicarbonate was measured using 13C NMR spectroscopy during substrate turnover in the presence and absence of glutamine as a nitrogen source. In the absence of added glutamine, CPS catalyzed the exchange of one oxygen atom from bicarbonate with solvent water during every turnover of the bicarbonate-dependent ATPase reaction. In the presence of added glutamine, there was no exchange of solvent water with bicarbonate during the enzymatic synthesis of carbamoyl phosphate, indicating that any carbon-containing intermediate in the reaction mechanism is committed to the formation of carbamoyl phosphate and is not subject to hydrolysis. These results are fully consistent with a chemical mechanism that requires the physical migration of the carbamate intermediate from the site of its formation within one of the nucleotide binding domains to the other nucleotide binding domain for subsequent phosphorylation by the second MgATP. These results are not compatible with a nucleotide switch mechanism. The nucleotide switch mechanism includes the synthesis of carbamoyl phosphate entirely within a single nucleotide binding domain and concurrent conformational changes driven by the bicarbonate-dependent hydrolysis of MgATP at the second nucleotide binding domain.  相似文献   

13.
We have studied the effects of the Sulfolobus solfataricus chaperonin on the aggregation and inactivation upon heating of four model enzymes: chicken egg white lysozyme (one 14.4-kDa chain), yeast alpha-glucosidase (one 68.5-kDa chain), chicken liver malic enzyme (four 65-kDa subunits), and yeast alcohol dehydrogenase (four 37.5-kDa subunits). When the proteins were heated in the presence of an equimolar amount of chaperonin, 1) the aggregation was prevented in all solutions; 2) the inactivation profiles of the single-chain enzymes were comparable with those detected in the absence of the chaperonin, and enzyme activities were regained in the solutions heated in the presence of the chaperonin upon ATP hydrolysis (78 and 55% activity regains for lysozyme and alpha-glucosidase, respectively); 3) the inactivation of the tetrameric enzymes was completely prevented, whereas the activities decreased in the absence of the chaperonin. We demonstrate by gel filtration chromatography that the chaperonin interacted with the structures occurring during thermal denaturation of the model proteins and that the interaction with the single-chain proteins (but not that with the tetrameric proteins) was reversed upon ATP hydrolysis. The chaperonin had nonequivalent surfaces for the binding of the model proteins upon heating: the thermal denaturation intermediates of the single-chain proteins share Surfaces I, while the thermal denaturation intermediates of the tetrameric proteins share Surfaces II. ATP binding to the chaperonin induced a conformation that lacked Surfaces I and carried Surfaces II. These data support the concept that chaperonins protect native proteins against thermal aggregation by two mechanistically distinct strategies (an ATP-dependent strategy and an ATP-independent strategy), and provide the first evidence that a chaperonin molecule bears functionally specialized surfaces for the binding of the protein substrates.  相似文献   

14.
When chaperonins GroEL and GroES are incubated under functional conditions in the presence of ATP (5 mM) and K+ (150 mM), GroEL-GroES complexes appear in the incubation mixture, that are either asymmetric (1:1 GroEL:GroES oligomer ratio) or symmetric (1:2 GroEL:GroES oligomer ratio). The percentage of symmetric complexes present is directly related to the [ATP]/[ADP] ratio and to the K+ concentration. Kinetic analysis shows that there is a cycle of formation and disappearance of symmetric complexes. A correlation between the presence of symmetric complexes in the incubation mixture and its rhodanese folding activity suggests some active role of these complexes in the protein folding process. Accordingly, under functional conditions, symmetric complexes are found to contain denatured rhodanese. These data suggest that binding of substrate inside the GroEL cavity takes place before the symmetric complex is formed.  相似文献   

15.
The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 A resolution, shows a well-ordered domain with the same fold as in intact GroEL. We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a "minichaperone." This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for its various substrates in vivo, where the cavity may also be required for special functions.  相似文献   

16.
The conformational properties of the molecular chaperone GroEL in the presence of ATP, its non-hydrolyzable analog 5'-adenylimidodiphosphate (AMP-PNP), and ADP have been analyzed by differential scanning calorimetry (DSC), Fourier-transform infra-red (FT-IR) and fluorescence spectroscopy. Nucleotide binding to one ring promotes a decrease in the Tm value of the GroEL thermal transition that is reversed when both rings are filled with nucleotide, indicating that the sequential occupation of the two protein rings by these nucleotides has different effects on the GroEL thermal denaturation process. In addition, ATP induces a conformational change in GroEL characterized by (a) the appearance of a reversible low temperature endotherm in the DSC profiles of the protein, and (b) an enhanced binding of the hydrophobic probe 8-anilino-naphthalene-1-sulfonate (ANS), which strictly depends on ATP hydrolysis. The similar sensitivity to K+ of the temperature range where activation of the GroEL ATPase activity, the low temperature endotherm, and the increase of the ANS fluorescence are abserved strongly indicates the existence of a conformational state of GroEL during ATP hydrolysis, different from that generated on ADP or AMP-PNP binding. To achieve this intermediate conformation, GroEL mainly modifies its tertiary and quaternary structures, leading to an increased exposure of hydrophobic surfaces, with minor rearrangements of its secondary structure.  相似文献   

17.
The chaperonin GroEL is a ribosome-sized double-ring structure that assists in folding a diverse set of polypeptides. We have examined the fate of a polypeptide during a chaperonin-mediated folding reaction. Strikingly, we find that, upon addition of ATP and the cochaperonin GroES, polypeptide is released rapidly from GroEL in a predominantly nonnative conformation that can be trapped by mutant forms of GroEL that are capable of binding but not releasing substrate. Released polypeptide undergoes kinetic partitioning: a fraction completes folding while the remainder is rebound rapidly by other GroEL molecules. Folding appears to occur in an all-or-none manner, as proteolysis and tryptophan fluorescence indicate that after rebinding, polypeptide has the same structure as in the original complex. These observations suggest that GroEL functions by carrying out multiple rounds of binding aggregation-prone or kinetically trapped intermediates, maintaining them in an unfolded state, and releasing them to attempt to fold in solution.  相似文献   

18.
Hydrolysis of ATP by the GroEL14 chaperonin oligomer is activated and modulated by Mg2+ or Mn2+ ions. Mg-ATP and Mn-ATP can serve as substrates of the reaction and bind in a positively cooperative manner to the same catalytic sites on GroEL14, with similar binding constants in the micromolar range. In addition, millimolar amounts of Mg2+ and Mn2+ ions can further activate the GroEL14-ATPase while interacting with low-affinity noncatalytic sites on the chaperonin. The extent of ATPase activation by Mn2+ is half of that by Mg2+ ions. When both Mg2+ and Mn2+ ions are present in the same reaction, Mn2+ behaves as a noncompetitive partial inhibitor of the Mg-dependent ATPase. This inhibition requires the presence of ADP in the catalytic site. The binding affinity of Mn-ADP to the site is significantly higher than that of Mg-ADP. A slower release of Mn-ADP from the catalytic site thus changes the rate-determining step of the GroEL14-ATPase cycle. In the cell, the concentrations of Mg2+ and Mn2+ ions are such that both divalent ions may modulate chaperonin activity.  相似文献   

19.
We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat- and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroE-mediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high- and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini- and holo-chaperones.  相似文献   

20.
Mitochondrial malate dehydrogenase (mMDH) folds more rapidly in the presence of GroEL, GroES and ATP than it does unassisted. The increase in folding rate as a function of the concentration of GroEL-ES reaches a maximum at a stoichiometry which is approximately equimolar (mMDH subunits:GroEL oligomer) and with an apparent dissociation constant K' for the GroE acceptor state of at least 1 x 10(-8) M. However, even at chaperonin concentrations which are 4000 x K', i.e. at negligible concentrations of free mMDH, the observed folding rate of the substrate remains at its optimum, showing not only that folding occurs in the chaperonin-mMDH complex but also that this rate is uninhibited by any interactions with sites on GroEL. Despite the ability of mMDH to fold on the chaperonin, trapping experiments show that its dwell time on the complex is only 20 seconds. This correlates with both the rate of ATP turnover and the dwell time of GroES on the complex and is only approximately 5% of the time taken for the substrate to commit to the folded state. The results imply that ATP drives the chaperonin complex through a cycle of three functional states: (1) an acceptor complex in which the unfolded substrate is bound tightly; (2) an encapsulation state in which it is sequestered but direct protein-protein contact is lost so that folding can proceed unhindered; and (3) an ejector state which forces dissociation of the substrate whether folded or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号