首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
对GP大信号模型及其参数提取方法进行了研究,并对发射极尺寸为2μm×19μm的InP/InGaAs HBT进行了建模.模型的仿真结果表明,所建模型能较为精确地表征实际HBT器件的直流和高频小信号特性.基于建立的HBT大信号模型设计并制备出InP基PIN+HBT单片集成光接收前端,经在片测试,集成前端的3dB带宽可达3GHz.  相似文献   

2.
采用InP/InGaAs HBT与PIN光探测器单片集成方案,对光接收光电集成电路(OEIC)的外延材料结构和生长、电路设计、制作工艺和性能测试进行了研究.基于自对准InP/InGaAs HBT工艺,实现了1.55μm波长单片集成光接收OEIC.发射极尺寸2μm×8μm的InP/InGaAs HBT直流增益为40,截止频率和最高振荡频率分别为45和54GHz;集成InGaAs PIN光探测器在-5V下响应度为0.45A/W@1.55/μm,暗电流小于10nA,-3dB带宽达到10.6GHz;研制的HBT/PIN单片集成光接收OEIC在2.5和3.0Gb/s速率非归零223-1伪随机码传输工作时可以观察到张开的眼图,灵敏度≤-15.2dBm@BER=10-9.  相似文献   

3.
采用InP/InGaAs HBT与PIN光探测器单片集成方案,对光接收光电集成电路(OEIC)的外延材料结构和生长、电路设计、制作工艺和性能测试进行了研究.基于自对准InP/InGaAs HBT工艺,实现了1.55μm波长单片集成光接收OEIC.发射极尺寸2μm×8μm的InP/InGaAs HBT直流增益为40,截止频率和最高振荡频率分别为45和54GHz;集成InGaAs PIN光探测器在-5V下响应度为0.45A/W@1.55/μm,暗电流小于10nA,-3dB带宽达到10.6GHz;研制的HBT/PIN单片集成光接收OEIC在2.5和3.0Gb/s速率非归零223-1伪随机码传输工作时可以观察到张开的眼图,灵敏度≤-15.2dBm@BER=10-9.  相似文献   

4.
介绍了pin/HBT单片集成OEIC光接收机的集成结构和电路结构,分析了这种集成方式的光接收机前端设计过程中影响带宽和灵敏度的因素,总结了集成器件最新的研究进展。  相似文献   

5.
用Atlas软件对单向载流子传输光电探测器(uni-traveling-carrier photodetector,UTC-PD)进行了模拟,研究了器件的基本工作原理,着重讨论了器件性能与外延层结构的关系.设计出的UTC-PD可同时具有高的响应度(≥0.18A/W)和宽的3dB带宽(≥100GHz).与传统的pin光电探测器相比简化了前端电路结构,降低了噪声,节约了成本,可以应用于超高速光互联.  相似文献   

6.
对用于光电集成电路(OEIC)的InP基异质结双极性晶体管(HBT)及PIN探测器进行了设计与研制,讨论了堆叠层结构和共享层结构2种常见的集成方式,通过实验比较,确定了共享层结构器件性能更好,并对此结构进行了改进。所研制的HBT截止频率达到30 GHz,直流增益达到100;PIN的3 dB带宽达到了15 GHz。详细介绍了器件结构及工艺流程。  相似文献   

7.
用Atlas软件对单向载流子传输光电探测器(uni-traveling-carrier photodetector,UTC-PD)进行了模拟,研究了器件的基本工作原理,着重讨论了器件性能与外延层结构的关系.设计出的UTC-PD可同时具有高的响应度(≥0.18A/W)和宽的3dB带宽(≥100GHz).与传统的pin光电探测器相比简化了前端电路结构,降低了噪声,节约了成本,可以应用于超高速光互联.  相似文献   

8.
基于国内的材料和工艺技术,研制出850 nm单片集成光接收机前端,集成形式包括PIN/TIA、PIN/DA、MSM/TIA和MSM/DA等.对光探测器和电路分别进行了研究和优化.通过Silvaco软件,建立了探测器器件模型,并通过实验数据验证.分布放大器-3 dB带宽接近20 GHz,跨阻增益约46 dBΩ,输入、输出驻波比均小于2,噪声系数在3.03~6.5 dB之间.跨阻前置放大器-3 dB带宽接近10 GHz,跨阻增益约43 dBΩ,输入、输出驻波比均小于3.5,噪声系数在4~6.5 dB之间.集成芯片最高工作速率达到5 Gb/s.  相似文献   

9.
采用0.5 μm GaAs PHEMT工艺,研制了一种PIN光探测器和分布放大器单片集成850 nm光接收机前端. 探测器光敏面直径为30 μm,电容为0.25 pF,10 V反向偏压下的暗电流小于20 nA.分布放大器-3 dB带宽接近20 GHz,跨阻增益约46 dBΩ;在50 MHz~16 GHz范围内,输入、输出电压驻波比均小于2;噪声系数在3.03~6.50 dB之间.单片集成光接收机前端在1.0和2.5 Gb/s非归零(NRZ)伪随机二进制序列(PRBS)调制的光信号下得到较为清晰的输出眼图.  相似文献   

10.
高速光探测器是高速光纤通信系统和网络中的关键器件,它要求光探测器具有宽的频率响应带宽和高量子效率。垂直入光型pin光探测器的高速性能和量子效率均受到吸收层厚度的限制。为了改善其高速性能,采用InGaAsP材料作为吸收层以及限制层渐变掺杂的方法,对垂直入光型pin光探测器的高速响应性能进行了理论研究和仿真,结果表明,高速响应达到了40GHz。与不采用渐变掺杂浓度的同种结构光探测器相比,高速响应性能显著提高。  相似文献   

11.
A low-power, short-wavelength eight-channel monolithically integrated photoreceiver array, based on SiGe/Si heterojunction bipolar transistors, is demonstrated. The photoreceiver consists of a photodiode, three-stage transimpedance amplifier, and passive elements for feedback, biasing and impedance matching. The photodiode and transistors are grown by molecular beam epitaxy in a single step. The p-i-n photodiode exhibits a responsivity of 0.3A/W and a bandwidth of 0.8 GHz at λ=0.88 μm. The three-stage transimpedance amplifier demonstrates a transimpedance gain of 43 dBΩ and a -3 dB bandwidth of 5.5 GHz. A single channel monolithically integrated photoreceiver consumes a power of 6 mW and demonstrates an optical bandwidth of 0.8 GHz. Eight-channel photoreceiver arrays are designed for massively parallel applications where low power dissipation and low crosstalk are required. The array is on a 250-μm pitch and can be easily scaled to much higher density. Large signal operation up to 1 Gb/s is achieved with crosstalk less than -26 dB. A scheme for time-to-space division multiplexing is proposed and demonstrated with the photoreceiver array  相似文献   

12.
High-speed, long-wavelength InAlAs/InGaAs OEIC photoreceivers based on a p-i-n/HBT shared layer integration scheme have been designed, fabricated and characterized. The p-i-n photodiodes, formed with the 6000 Å-thick InGaAs precollector layer of the HBT as the absorbing layer, exhibited a responsivity of ~0.4 A/W and a -3 dB optical bandwidth larger than 20 GHz at λ=1.55 μm. The fabricated three-stage transimpedance amplifier with a feedback resistor of 550 Ω demonstrated a transimpedance gain of 46 dBΩ and a -3 dB bandwidth of 20 GHz. The monolithically integrated photoreceiver with a 83 μm p-i-n photodiode consumed a small dc power of 35 mW and demonstrated a measured -3 dB optical bandwidth of 19.5 GHz, which is the highest reported to date for an InAlAs/InGaAs integrated front-end photoreceiver. The OEIC photoreceiver also has a measured input optical dynamic range of 20 dB. The performance of individual devices and integrated circuits was also investigated through detailed CAD-based analysis and characterization. Transient simulations, based on a HSPICE circuit model and previous measurements of eye diagrams for a NRZ 231-1 pseudorandom binary sequence (PRBS), show that the OEIC photoreceiver is capable of operation up to 24 Gb/s  相似文献   

13.
A monolithically integrated photoreceiver using an InAlAs/InGaAs HBT-based transimpedance amplifier has been fabricated and characterized. The p-i-n photodiode is implemented using the base-collector junction of the HBT. The 5 μm×5 μm emitter area transistors have self-aligned base metal and non-alloyed Ti/Pt/Au contacts. Discrete transistors demonstrated fT and fmax of 54 GHz and 51 GHz, respectively. The amplifier demonstrated a -3 dB transimpedance bandwidth of 10 GHz and a gain of 40 dBΩ. The integrated photoreceiver with a 10 μm×10 μm p-i-n photodiode showed a -3 dB bandwidth of 7.1 GHz  相似文献   

14.
40-Gbit/s OEIC on GaAs substrate through metamorphic buffer technology   总被引:1,自引:0,他引:1  
An optoelectronic integrated circuit operating in the 1.55-/spl mu/m wavelength range was realized on GaAs substrate through metamorphic technology. High indium content layers, metamorphically grown on a GaAs substrate, were used to fabricate the optoelectronic integrated circuits (OEICs) with -3 dB bandwidth of 40 GHz and 210 V/W of calculated responsivity. The analog OEIC photoreceiver consists of a 12-/spl mu/m, top-illuminated p-i-n photodiode, and a traveling wave amplifier (TWA). This receiver shows 6 GHz wider bandwidth than a hybrid photoreceiver, which was built using comparable, but stand-alone metamorphic p-i-n diode and TWA. With the addition of a buffer amplifier, the OEIC shows 7 dB more gain than the hybrid counterpart. To our knowledge, this is the first 40 Gbit/s OEIC achieved on a GaAs substrate operating at 1.55 /spl mu/m.  相似文献   

15.
This paper presents two kinds of monolithically integrated ultra-wideband photoreceivers that use HBT-compatible HPTs with novel base circuits. The HPT photoreceiver, which consists of an HPT with an inductor and series resistor base circuit, yields ultra-broadband operation with 3 dB bandwidth from 0.43-12.1 GHz and over 11 dB gain compared to a photodiode with identical quantum efficiency. The HPT/HBT photoreceiver, which consists of an HPT with an inductor at the base terminal followed by an HBT amplifier circuit, yields ultra-wideband operation from 8.5-20.5 GHz (bandwidth of 12 GHz) with over 20 dB gain. The bandwidths of these photoreceivers are state-of-the art for monolithically integrated photoreceivers using HPT/HBT structures. The proposed photoreceivers, which are based on mature MMIC technologies, offer several other remarkable features such as good design accuracy and extremely small chip size  相似文献   

16.
An 8-element linear array of single-stage integrating front-end photoreceivers using molecular beam epitaxial (MBE) regrowth was investigated. Each element consisted of a p-i-n In0.53Ga0.47As photodiode integrated with a selectively regrown pseudomorphic In0.65Ga0.35As/In0.52Al0.48 As MODFET. Cutoff frequencies of 1.0-μm discrete regrown MODFETs were ft=24 GHz and fmax=50 GHz. Transconductance of the regrown MODFETs was as high as 495 mS/mm with a current density (Ids) of 250 mA/mm. The 3-dB bandwidth of the photoreceiver was measured to be 1 GHz. The bit rate sensitivity at 1 Gb/s was -31.8 dBm for BER 10-9 using 1.55 μm excitation for a photoreceiver with an anti-reflection coating. The single-stage amplifier exhibited up to 25 dB flatband gain of the photocurrent, and a two-stage amplifier was up to 31 dB of gain. Good uniformity between each photoreceiver element in the array was achieved. Electrical crosstalk between photoreceiver elements was estimated to be ~-34 dB  相似文献   

17.
设计了一个由调节型级联跨阻抗放大器(TIA)和双光电二极管(DPD)构成的光电集成接收机.给出了DPD小信号电路模型和单片集成光接收机的带宽设计方法,给出限制DPD和光接收机带宽的重要因素,分析和模拟了这个光电集成接收机的带宽,用低成本的0.6μm CMOS工艺设计出1.71GHz带宽和49dB跨阻增益的接收机,并给出测试结果.  相似文献   

18.
We propose an inductive compensation method for a surface‐mountable 10 Gbps photoreceiver module. Since many typical 10 Gbps photoreceiver modules consist of a photodetector and low‐noise pre‐amplifier, the impedance mismatch between the photodetector and preamplifier, as well as package parasitics, may reduce the frequency bandwidth. In this paper, we inserted an inductive component between the photodetector and pre‐amplifier in order to create frequency bandwidth expansion. From the measurement results, we have found that the proposed technique can increase the ?3 dB bandwidth about 4.2 GHz wider compared with an uncompensated module. And, from a bit‐error rate (BER) test, we observed ?15.7 dB sensitivity at 10?12 BER. This inductive compensation can be implemented easily and is compatible with common manufacturing processes of photoreceiver modules.  相似文献   

19.
We have investigated adjacent channel crosstalk in 3-, 8-, and 16-channel InP-based monolithically integrated p-i-n/HBT photoreceiver arrays, with a channel bandwidth of 11 GHz. By using a novel monolithically integrated radiation shield, we have been able to reduce the crosstalk to -35 dB at 10 GHz. These parameters represent the best performance in multichannel integrated photoreceiver arrays. The two main components of crosstalk are found to be radiation crosstalk and electrical crosstalk and these are separately dependent on interchannel spacing and single- or dual-source biasing schemes. An electromagnetic full-wave solution shows that the measured crosstalk in arrays without the radiation shield could be dominated by radiation crosstalk, which can be modeled as a capacitive coupling between adjacent channels. Similarly, electrical crosstalk can be modeled by equivalent parasitic resistive and inductive elements. Values of these circuit elements have been determined by analyzing experimental data  相似文献   

20.
The epitaxial structure and growth, circuit design, fabrication process and characterization are described for the photoreceiver opto-electronic integrated circuit (OEIC) based on the InP/lnGaAs HBT/PIN photodetector integration scheme. A 1.55 μm wavelength monolithically integrated photoreceiver OEIC is demonstrated with self-aligned InP/lnGaAs heterojunction bipolar transistor (HBT) process. The InP/lnGaAs HBT with a 2 μm × 8 μm emitter showed a DC gain of 40, a DC gain cutoff frequency of 45 GHz and a maximum frequency of oscillation of 54 GHz. The integrated InGaAs photodetector exhibited a responsivity of 0.45 AAV at λ = 1.55 μm, a dark current less than 10 nA at a bias of -5 V and a -3 dB bandwidth of 10.6 GHz. Clear and opening eye diagrams were obtained for an NRZ 223-l pseudorandom code at both 2.5 and 3.0 Gbit/s. The sensitivity for a bit error ratio of 10-9 at 2.5 Gbit/s is less than -15.2 dBm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号