首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To ascertain the possible implications of the nitric oxide (NO*) producing system in striatal senescence, and by using immunohistochemistry and image-processing approaches, we describe the presence of the enzyme nitric oxide synthase (NOS), the NADPH-diaphorase (NADPH-d) histochemical marker, and nitrotyrosine-derived complexes (N-Tyr) in the striatum of adult and aged rats. The results showed neuronal NOS immunoreactive (nNOS-IR) aspiny medium-sized neurons and nervous fibres in both age groups, with no variation in the percentage of immunoreactive area but a significant decrease in the intensity and in the number of somata with age, which were not related to the observed increase with age of the striatal bundles of the white matter. In addition, NADPH-d activity was detected in neurons with morphology similar to that of the nNOS-IR cells; a decrease in the percentage of area per field and in the number of cells, but an increase in the intensity of staining for the NADPH-d histochemical marker, were detected with age. The number of neuronal NADPH-d somata was higher than for the nNOS-IR ones in both age groups. Moreover, N-Tyr-IR complexes were observed in cells (neurons and glia) and fibres, with a significant increase in the percentage of the area of immunoreaction, related to the increase of white matter, but a decrease in intensity for the aged group. On the other hand, we did not detect the inducible isoform (iNOS) either in adult or in aged rats. Taken together, these results support the contention that NADPH-d staining is not such an unambiguous marker for nNOS, and that increased protein nitration may participate in striatal aging.  相似文献   

3.
The inner plexiform layer of the retina is a synaptic layer mostly devoid of perikarya. It contains the processes of three major neuron types: the bipolar cells, which carry information from the photoreceptors, the ganglion cells, which are the output elements of the retina, and the amacrine cells, which are able to influence the communication between the former two. Since amacrine cells are the most diverse retinal neurons, they are in a position to carve out and delineate the neural circuits of the inner retina. The aim of this review is to offer a summary of findings related to the general synaptology of the inner retina in frogs and also to provide some insight into the synaptic organization of neurochemically identified amacrine cells. The main conclusions of this paper are as follows: (i) Most contacts are formed between amacrine cells. (2) Direct bipolar to ganglion cell synapses exist, but are rare in the anuran retina. (3) All neurochemically identified amacrine cell types receive inputs from bipolar cells, but not all of them form reciprocal contacts with bipolar cell axon terminals. (4) A major inhibitory transmitter, gamma-aminobutyric acid, is involved in more than 50% of the synapses. Since contacts between inhibitory elements were often observed, disinhibitory circuits must also play a role in retinal information processing. (5) Reciprocal relationship between dopaminergic and gamma-aminobutyric acid-containing cells have been confirmed. Similar situation was observed in case of serotoninergic and gamma-aminobutyric acid-positive elements. No contacts were verified between serotoninergic and dopaminergic elements. (6) Both monoamine- and neuropeptide-containing amacrine cells establish direct contacts with ganglion cell dendrites, providing a morphological basis for neuromodulatory influence on the output elements of the retina. Unfortunately, only a handful of studies have been carried out to identify the synaptic connections between neurochemically identified cells in the anuran retina. Double-label studies at the electron microscope level to reveal the synaptic relationship of cell populations containing two different transmitters/modulators are extremely rare. Further insight into retinal synaptic circuitries could be gained with a combination of electrophysiology and morphology at the electron microscopic level. These studies must also involve identification of the transmitter receptors on identified cell types. Only after this step can the function of different synaptic circuitries be better approximated.  相似文献   

4.
Nitric oxide (NO) has been implied in age-related changes of the central nervous system (CNS) and the central auditory pathway. The present study was conducted to investigate whether the number of NO-producing cells and their morphometric characteristics in the inferior colliculus (IC) and the auditory cortex (AC) are changed with the increasing age of the subjects. IC and AC sections of adult and senile Wistar rats were studied using the histochemical detection of NADPH-diaphorase activity (NADPH-d), a marker for neurons containing nitric oxide synthase (NOS). Our results showed a decreased area of the somas of NADPH-d-positive neurons in the dorsal cortex (DC) of the IC and a diffuse loss of NADPH-d-positive neurons in the senile IC and primary cortical auditory area (Te1). However, an increased number of NO-producing cells have been shown by other authors in different parts of the ageing auditory pathway and CNS. It seems that age-related changes in NADPH-d-positive cells may follow a region-specific route. These changes may be related to hearing impairments with increasing age.  相似文献   

5.
Amacrine cells are third-order retinal interneurons, projecting their processes into the inner plexiform layer. Historically, they were not considered as neurons first. By the middle of the 20th century, their neuronal nature was confirmed, and their enormous diversity established. Amacrine cells have been most successfully subdivided into morphological categories based on two parameters: diameter of the dendritic field and ramification pattern in the inner plexiform layer. Works combining anatomy, physiology, and neurochemistry are scarce and in the case of the anuran retina, the situation is even worse. Correlation between morphology, neurochemistry, and physiology is little studied. Here we try to build up a database and pinpoint some of the missing data. Obtaining those could help to better understand retinal function. Sporadic attempts did not make it possible to develop a comprehensive catalog of morphologically distinct amacrine cell types in the anuran retina. The number of morphologically identified amacrine cells currently stands at 16. The list of neurochemically identified distinct cell types can be given as follows: five types GABA-containing cell types with secondary markers and at least one without; two glycinergic cell types and one interplexiform cell where glycine colocalizes with somatostatin; one dopaminergic amacrine cell and also a variant of this with interplexiform morphology; two types of serotoninergic cells; three NADPHdiaphorase-positive cells, one substance P-positive cell type without identified second marker; one CCK-positive cell type without identified second marker and the calbindin positive cells (at least one but potentially more types). This adds up to 19 cell types, out of which two are interplexiform in character. This is more than that could be identified by purely morphological means. Out of Cajal's original 13 amacrine cell types described in the frog retina, 5 parallel unequivocally with neurons defined by neurochemistry. Three others have one close match each, but their exact identity is uncertain. The remaining amacrine cells have more than one potential matches. At the same time, on one hand the amacrine cell named two-layered by Cajal so far has no match among the neurochemically identified amacrine cells. On the other hand, the interplexiform subtype of the dopaminergic cell, the somatostatin-containing glycinergic interplexiform cell, the starburst cell, and the bistratified neuropeptide Y-immunoreactive cell have no match among Cajal's cells. All in all, the number of known amacrine and interplexiform cells now stands at at least 21 in the anuran retina. Physiological characterization of amacrine cells shows that their general features seem to be rather similar to those described in tiger salamander retina. In Xenopus retina, morphologically and physiologically identified amacrine cells responded to light stimulation most frequently with ON-OFF characteristics. Immunhistochemical identification of the recorded and dye injected cells showed that amacrine cells of the "same physiological type" might have different morphology. In other words, amacrine cells with different morphology can respond similarly to illumination. Even so, small differences between almost identical responses may reflect that the cell they stem from indeed belongs to different cell types.  相似文献   

6.
Nitric oxide (NO) is a short-living free molecule synthesized by three different isoforms of nitric oxide synthases (NOS)—neuronal NOS, endothelial NOS, and inducible NOS—associated with neuromuscular transmission, muscle contractility, mitochondrial respiration, and carbohydrate metabolism in skeletal muscle. Neuronal NOS is constitutively expressed at the muscle fiber sarcolemma linked to the dystrophin-glycoprotein complex and concentrated at the neuromuscular endplate. There is increasing evidence that altered expression of neuronal NOS plays a role in muscle fiber damage in neuromuscular diseases such as dystrophinopathies and denervating disorders. Although there have been some previous conflicting results on the neuronal NOS expression pattern in denervated muscle fibers, it is now well established that denervation is associated with a down-regulation and disappearance of sarcolemmal neuronal NOS at synaptic/extrasynaptic or both sites. As NO has been shown to induce collapse and growth arrest on neuronal growth cones, down-regulation of sarcolemmal neuronal NOS may contribute to axonal regeneration and attraction to muscle fibers aiming at the formation of new motor endplates providing reinnervation and reconstitution of NOS expression. As NO serves as a retrograde messenger, it may trigger structural downstream events responsible for neuromuscular synaptogenesis and preventing polyneural innervation. Nevertheless, decreased NO production in denervation reduces the cytoprotective scavenger function of NO for superoxide anions promoting oxidative stress that is likely to be involved in muscle fiber damage and death. However, the multifaced role of NOS and NO under physiological and pathological conditions remains poorly understood on the basis of the current knowledge. Microsc. Res. Tech. 55:181–186, 2001. © 2001 Wiley-Liss, Inc.  相似文献   

7.
Although the genetic and biochemical bases of many of the muscular dystrophies have been elucidated, the pathophysiological mechanisms leading to muscle cell death and degeneration remain elusive. Among the most well studied of the dystrophies are those due to defects in proteins that make up the dystrophin-glycoprotein complex (DGC). There has been much interest in the role of nitric oxide (NO(*)) in the pathogenesis of these diseases because the enzyme that synthesizes NO(*), nitric oxide synthase (NOS), is associated with the DGC. Recent studies of dystrophies related to DGC defects suggest that one mechanism of cellular injury is functional ischemia related to alterations in cellular NOS and disruption of a normal protective action of NO(*). This protective action is the prevention of local ischemia during contraction-induced increases in sympathetic vasoconstriction. However, the loss of this protection, alone, does not explain the subsequent muscle cell death and degeneration since mice lacking neuronal NOS (the predominant isoform expressed in muscle) do not develop a muscular dystrophy. Thus, there must be additional biochemical changes conferred upon the cells by these DGC defects, and these changes are discussed in terms of a proposed "two hit" hypothesis of the pathogenetic mechanisms that underlie the muscular dystrophies. According to this hypothesis, pathogenic defects in the DGC have at least two biochemical consequences: a reduction in NO(*)-mediated protection against ischemia, and an increase in cellular susceptibility to metabolic stress. Either one alone may be insufficient to lead to muscle cell death. However, in combination, the biochemical consequences are sufficient to cause muscle degeneration. The role of oxidative stress as a final common pathophysiologic pathway is discussed in terms of data showing that oxidative injury precedes pathologic changes and that muscle cells with defects in the DGC have an increased susceptibility to oxidant challenges. Accordingly, this "two hit" hypothesis may explain many of the complex spatial and temporal variations in disease expression that characterize the muscular dystrophies, such as grouped necrosis, a pre-necrotic phase of the disease, and selective muscle involvement.  相似文献   

8.
Nitric oxide (NO) is a gaseous intercellular messenger with a wide range of neural functions. NO is synthesized by activation of different isoforms of nitric oxide synthases (NOS). At present NOS immunoreactivity has been described in mouse brain in restricted and definite areas and no detailed mapping studies have yet been reported for NOS immunoreactivity. We have studied the distribution of neuronal NOS-containing neurons in the brain of three months male mice, using a specific commercial polyclonal antibody against the neuronal isoform of nitric oxide synthase (nNOS). Neuronal cell bodies exhibiting nNOS immunoreactivity were found in several distinct nuclei throughout the brain. The neurons that were positively stained exhibited different intensities of reaction. In some brain areas (i.e., cortex, striatum, tegmental nuclei) neurons were intensely stained in a Golgi-like fashion. In other regions, immunoreactive cells are moderately stained (i.e., magnocellular nucleus of the posterior commissure, amygdaloid nucleus, interpeduncular nucleus, lateral periaqueductal gray) or weakly stained (i.e., vascular organ of the lamina terminalis, hippocampus, inferior colliculus, reticular nucleus). In the mouse, the NO-producing system appears well developed and widely diffused. In particular, nNOS immunoreactive neurons seem chiefly present in several sensory pathways like all the nuclei of the olfactory system, as well as in many regions of the lymbic system. These data suggest a widespread role for the NO system in the mouse nervous system.  相似文献   

9.
Neurons in the superficial layers of the superior colliculus are key elements in the visual system of rodents since they receive extensive afferent projections from retinal ganglion cells. The NADPH-diaphorase histochemical technique was used to detect differences in neuronal nitric oxide synthase (nNOS) in the superficial layers of the superior colliculus (sSC) of young adult (3 months) and aged (24 and 26 months) rats. The orientation of the dendritic processes of NADPH-diaphorase-positive neurons, cross-sectional area, and number of neurons per mm2 were analyzed. NADPH-d histochemistry revealed a high number of NADPH-d-positive cells in the stratum zonale and stratum griseum superficiale in adult and aged animals. NADPH-d-positive neurons were classified into the following morphological types: marginal, horizontal, pyriform, narrow-field vertical, wide-field vertical, and stellate. During aging, narrow field vertical and wide field vertical neurons present somatic atrophy and an increase in dendritic processes with dorsoventral orientation, whereas wide field vertical neurons show a decrease in those with lateromedial orientation. Marginal neurons undergo somatic hypertrophy at 26 months when compared with those at 3 months. The remaining types of neurons do not undergo size changes. Finally, the number of NADPH-d-positive neurons per mm2 in the various types of morphology does not significantly change with age. It is suggested to be likely that the aging process in the nitrergic neurons of the sSC does not lead to significant changes in the synthesis of NO from the constitutive NOS isoforms.  相似文献   

10.
NO message from muscle.   总被引:3,自引:0,他引:3  
The synthesis of the free radical gas nitric oxide (NO) is catalyzed by the enzyme NO synthase (NOS). NOS converts arginine and molecular oxygen to NO and citrulline in a reaction that requires NADPH, FAD, FMN, and tetrahydrobiopterin as cofactors. Three types of NOS have been identified by molecular cloning. The activity of the constitutively expressed neuronal NOS (nNOS) and endothelial NOS (eNOS) is Ca(2+)/calmodulin-dependent, whereas that the inducible NOS (iNOS) is Ca(2+)-insensitive. The predominant NOS isoform in skeletal muscle is nNOS. It is present at the sarcolemma of both extra- and intrafusal muscle fibers. An accentuated accumulation of nNOS is found in the endplate area. This strict sarcolemmal localization of nNOS is due its association with the dystrophin-glycoprotein complex, which is mediated by the syntrophins. The activity of nNOS in skeletal muscle is regulated by developmental, myogenic, and neurogenic influences. NO exerts several distinct effects on various aspects of skeletal muscle function, such as excitation-contraction coupling, mitochondrial energy production, glucose metabolism, and autoregulation of blood flow. Inside the striated muscle fibers, NO interacts directly with several classes of proteins, such as soluble guanylate cyclase, ryanodine receptor, sarcoplasmic reticulum Ca(2+)-ATPase, glyceraldehyde-3-phosphate dehydrogenase, and mitochondrial respiratory chain complexes, as well as radical oxygen species. In addition, NO produced and released by contracting muscle fibers diffuses to nearby arterioles where it acts to inhibit reflex sympathetic vasoconstriction.  相似文献   

11.
Nitric oxide: relation to integrity, injury, and healing of the gastric mucosa   总被引:14,自引:0,他引:14  
Nitric oxide (NO) plays a multifaceted role in mucosal integrity. The numerous functions of NO and the double-edged role played by NO in most of them provide a great complexity to the NO action. The three enzymatic sources of NO, neuronal NO-synthase (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS), have been characterised in the gastrointestinal tract. The protective properties of the NO derived from constitutive NO-synthases (eNOS and nNOS) have already been well established. Less clear is the role assigned to iNOS. The simplistic initial view of low levels of NO synthesised by constitutive NOS being protective while exaggerated NO levels after iNOS induction leading irremediably to cytotoxicity is being questioned by new evidence. As initially reported for constitutive NOS, iNOS activity may be associated to reduced leukocyte-endothelium interaction and platelet aggregation as well as protection of mucosal microcirculation. Moreover, iNOS activity may be important to resolve inflammation by increasing apoptosis in inflammatory cells. It is entirely possible that a low level of expression of iNOS will reflect a positive host-defense response to challenge, but that exaggerated or uncontrolled expression of iNOS itself becomes detrimental. There is no doubt about the protective role of NO in physiological conditions. However, when the mucosa is threatened, the role of NO becomes multiple and the final effect will probably depend on the nature of the insult, the environment involved, and the interaction with other mediators.  相似文献   

12.
Gastropod molluscs provide attractive model systems for behavioral and cellular analyses of the action of nitric oxide (NO), specifically due to the presence of many relatively giant identified nitrergic neurons in their CNS. This paper reviews the data relating to the presence and distribution of NO as well as its synthetic enzyme NO synthase (NOS) in the CNS and peripheral tissues in ecologically and systematically different genera representing main groups of gastropod molluscs. Several species (Lymnaea, Pleurobranchaea, and Aplysia) have been analyzed in greater detail with respect to immunohistochemical, biochemical, biophysical, and physiological studies to further clarify the functional role of NO in these animals.  相似文献   

13.
14.
Nitric oxide (NO) is an important signalling molecule that plays a relevant role in different cell systems, among them the adult heart. The effects of NO are primarily mediated through modulation of Ca(2+) homeostasis, myofibrillar contractility, and metabolic regulation in cardiomyocytes. Recent evidence also suggests an important role of NO for cardiomyogenesis by modulating proliferation and differentiation and regulating cardiac function. In the embryonic, but also the healthy and diseased, adult mammalian heart, the inducible (iNOS) and the endothelial (eNOS) nitric oxide synthases (NOS) are detected. However, the expression pattern of NO and its function differ during development. Furthermore, under pathophysiological conditions NOS expression can also change and cause impairment of cardiac performance and cytotoxic effects. The present review focuses on the role and function of NO during cardiomyogenesis, the mechanisms responsible for eNOS availability, and the paracrine effects of NO generated by cardiomyocytes.  相似文献   

15.
Nitric oxide (NO) is produced by nitric oxide synthases (NOSs) and plays an important role in all levels of reproduction from the brain to the reproductive organs. Recently, it has been discovered that all germ cells and Leydig cells in the cat testis exhibit stage‐dependent nuclear and cytoplasmic endothelial (eNOS) and inducible (iNOS)‐NOS immunoreactivity and cytoplasmic nicotinamide adenine dinucleotide phosphate‐diaphorase (NADPH‐d) reactivity. As a continuation of this finding, in this study, cellular localization of NADPH‐d and immunolocalization and expression of all three NOS isoforms were investigated in the intratesticular (tubuli recti and rete testis), and excurrent ducts (efferent ductules, epididymal duct and vas deferens) of adult cats using histochemistry, immunohistochemistry and western blotting. NADPH‐d activity was found in the midpiece of the spermatozoa tail and epithelial cells of all of ducts, except for nonciliated cells of the efferent ductules. Even though the immunoblotting results revealed similar levels of nNOS, eNOS and iNOS in the caput, corpus and cauda segments of epididymis and the vas deferens, immunostainings showed cell‐specific localization in the efferent ductules and region‐ and cell‐specific localization in the epididymal duct. All of three NOS isoforms were immunolocalized to the nuclear membrane and cytoplasm of the epithelial cells in all ducts, but were found in the tail and the cytoplasmic droplets of spermatozoa. These data suggest that NO/NOS activity might be of importance not only for the functions of the intratesticular and excurrent ducts but also for sperm maturation. Microsc. Res. Tech. 79:192–208, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Although insects lack the adaptive immune response of the mammalians, they manifest effective innate immune responses, which include both cellular and humoral components. Cellular responses are mediated by hemocytes, and humoral responses include the activation of proteolytic cascades that initiate many events, including NO production. In mammals, nitric oxide synthases (NOSs) are also present in the endothelium, the brain, the adrenal glands, and the platelets. Studies on the distribution of NO-producing systems in invertebrates have revealed functional similarities between NOS in this group and vertebrates. We attempted to localize NOS activity in tissues of na?ve (UIL), yeast-injected (YIL), and saline-injected (SIL) larvae of the blowfly Chrysomya megacephala, using the NADPH diaphorase technique. Our findings revealed similar levels of NOS activity in muscle, fat body, Malpighian tubule, gut, and brain, suggesting that NO synthesis may not be involved in the immune response of these larval systems. These results were compared to many studies that recorded the involvement of NO in various physiological functions of insects.  相似文献   

17.
The origin of perivascular nerve fibres storing nitric oxide synthase (NOS) and co-localisation with perivascular neuropeptides were examined in the rat middle cerebral artery (MCA) by retrograde tracing with True Blue (TB) in combination with immunocytochemistry. Application of TB to the proximal part of the middle cerebral artery labelled nerve cell bodies ipsilaterally in the trigeminal, sphenopalatine, otic, and superior cervical ganglia. A few labelled cell bodies were seen contralaterally, suggesting bilateral innervation. In the parasympathetic sphenopalatine and otic ganglia, numerous TB-labelled cell bodies contained neuronal NOS (C- and N-terminal), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase activating peptide (PACAP). In the trigeminal ganglion, almost all TB-labelled cell bodies contained calcitonin gene-related peptide (CGRP) but only a few cells contained NOS. In the superior cervical ganglion, the majority of the TB-labelled nerve cells contained neuropeptide Y (NPY) but none of them contained NOS. Removal of the ipsilateral sphenopalatine ganglion caused a slight reduction in the number of perivascular VIP-, PACAP-, and NOS-containing fibres after 3 days in the MCA while there was no difference at 2 and 4 weeks after the denervation as compared to control. This indicates that the parasympathetic VIP-, PACAP-, and NOS-immunoreactive nerve fibres in the rat MCA originate from several sources.  相似文献   

18.
Nitric oxide (NO), synthesized by the hemoproteins NO synthases (NOS), is known to play important roles in physiological and pathological conditions in the heart, including hypoxia/reoxygenation (H/R). This work investigates the role that endogenous NO plays in the cardiac H/R-induced injury. A follow-up study was conducted in Wistar rats subjected to 30 min of hypoxia, with or without prior treatment using the nonselective NOS inhibitor L-NAME (1.5 mM). The rats were studied at 0 h, 12 h, and 5 days of reoxygenation, analysing parameters of cell, and tissue damage (lipid peroxidation, apoptosis, and protein nitration), as well as in situ NOS activity and NO production (NOx). The results showed that after L-NAME administration, in situ NOS activity was almost completely eliminated in all the experimental groups, and consequently, NOx levels fell. Contrarily, the lipid peroxidation level and the percentage of apoptotic cells rose throughout the reoxygenation period. These results reveal that NOS inhibition exacerbates the peroxidative and apoptotic damage observed before the treatment with L-NAME in the hypoxic heart, pointing to a cardioprotective role of NOS-derived NO against H/R-induced injury. These findings could open the possibility of future studies to design new therapies for H/R-dysfunctions based on NO-pharmacology.  相似文献   

19.
The amino acids GABA and glycine mediate synaptic transmission via specific neurotransmitter receptors. Molecular cloning studies have shown that there is a great diversity of GABA and glycine receptors. In the present article, the distribution of GABA and glycine receptors on identified bipolar and ganglion cell types in the mammalian retina is reviewed. Immunofluorescence obtained with antibodies against GABA and glycine receptors is punctate. Electron microscopy shows that the puncta represent a cluster of receptors at synaptic sites. Bipolar cell types were identified with immunohistochemical markers. Double immunofluorescence with subunit-specific antibodies was used to analyze the distribution of receptor clusters on bipolar axon terminals. The OFF cone bipolar cells seem to be dominated by glycinergic input, whereas the ON cone bipolar and rod bipolar cells are dominated by GABAergic input. Ganglion cells were intracellularly injected with Neurobiotin, visualized with Streptavidin coupled to FITC, and subsequently stained with subunit specific antibodies. The distribution and density of receptor clusters containing the alpha1 subunit of the GABA(A) receptor and the alpha1 subunit of the glycine receptor, respectively, were analyzed on midget and parasol cells in the marmoset (a New World monkey). Both GABA(A) and glycine receptors are distributed uniformly along the dendrites of ON and OFF types of parasol and midget ganglion cells, indicating that functional differences between these subtypes of ganglion cells are not determined by GABA or glycinergic input.  相似文献   

20.
王成强  张玲 《光学仪器》2019,41(2):13-16,59
提出了一种基于二氨基荧光素类一氧化氮(NO)探针DAF-FM的新型高效NO检测方法。通过纳米金颗粒的添加,显著增强了探针荧光强度,同时NO检测的灵敏度得到了显著的提高。该新型荧光探针可重复使用24次以上,弥补了DAF-FM的单次使用缺陷,实现了一氧化氮的可持续重复检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号