首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用低分子量聚碳硅烷(PCS)通过先驱体浸渍裂解(PIP)工艺、化学气相沉积(CVD)和粉末烧结技术相结合制备了3D Cf/SiC抗高温氧化复合材料。运用FTIR、1H-NMR、凝胶渗透色谱法(GPC)、热失重-差热(TGA-DTA)、X射线衍射仪(XRD)和透射电子显微镜(TEM)等手段研究了低分子量PCS的结构及其无机化过程。结果表明: PCS的主要结构为[—Si(CH3,H)—CH2—]n,数均分子量为420,陶瓷化产率为70%左右,在1 200 ℃时基本转化为微晶态的β-SiC;3D Cf/SiC复合材料及其构件具有较好的耐高温氧化性能。  相似文献   

2.
本文制备了不同氧含量的聚碳硅烷(PCS),研究了其中氧含量及其结合方式在PIP工艺中对Cf/SiC复合材料中碳纤维保留强度的影响。实验结果表明,PCS经过预氧化后,其内部的氧主要以稳定的Si-O键形式存在;其中氧含量的增加对浸渍裂解后碳纤维的保留强度影响不大;1400℃处理的结果与1100℃处理的结果相比要好得多。  相似文献   

3.
以聚碳硅烷(PCS)/二乙烯基苯(DVB)为先驱体制备了3D-B Cf/SiC复合材料,研究先驱体转化过程中不同裂解升温速率对材料力学性能的影响。结果表明:随着裂解升温速率的提高,材料致密度增加,界面结合变弱,从而陶瓷基复合材料的力学性能明显提高。以15℃/min裂解升温速率制得的陶瓷基复合材料的室温弯曲强度达到556.7MPa,1300℃真空下测试,材料的弯曲强度达到680.3MPa。  相似文献   

4.
SiC(Al)陶瓷纤维先驱体聚铝碳硅烷的合成与表征   总被引:4,自引:0,他引:4  
利用聚二甲基硅烷(PDMS)热解聚合的液相产物聚硅碳硅烷(PSCS)与乙酰丙酮铝(Al(AcAc)3)反应制备了SiC(Al)陶瓷纤维的先驱体聚铝碳譬烷(PACS),选用PSCS为原料消除了Al(AcAc)3在合成反应过程中出现的升华现象。合成的PACS化学式为:SiC2.0,H2.6Al0.018。数均分子量Mn=2265。研究反应过程发现PSCS发生裂解重排反应,Si-H键在反应中显示出巨大的活性,反应时伴随有乙酰丙酮气相副产物产生。反应机理研究表明,PACS分子量的增加是PSCS形成的Si-H键与Al(AcAc)3的配位基发生交联反应形成Si~Al键的结果。  相似文献   

5.
研究TiH2粉在以聚碳硅烷为先驱体裂解制备SiC陶瓷材料中的应用,结果表明,TiH2粉能缓和聚碳硅烷的裂解反应,增加先驱体的陶瓷产率,提高陶瓷材料性能,然而,先驱体在裂解过程中的线性收缩率和气孔率却随着TiH2粉的加和气孔率却随着TiH2粉的加入而增加。  相似文献   

6.
C/SiC复合材料的常压制备与性能研究   总被引:1,自引:0,他引:1  
采用聚碳硅烷作为碳化硅先驱体, 以二维0°/90°正交编织碳布叠层后作为增强体, 采用真空压力浸渍的方法制备了C/SiC复合材料, 研究了裂解温度和浆料浓度对复合材料性能的影响. 结果表明: 复合材料的弯曲强度随着裂解温度的升高以及浆料浓度的增加都呈增加趋势; 基体在纤维束内部分布均匀, 但依然有一些小气孔存在; 在1100℃时, 基体中开始生成一定量的β-SiC相, 复合材料的三点弯曲强度达到232MPa, 断裂韧性达到10.50MPa·m1/2. 在断裂过程中表现出明显的韧性断裂, 断口有较长的纤维拔出.  相似文献   

7.
碳化硅基复合材料是理想的高温结构材料,以聚碳硅烷(PCS)作为碳化硅陶瓷的先驱体,二乙烯基苯(DVB)为交联体,通过改变二者的配比研究了PCS与DVB的交联反应以及PCS/DVB交联体的热裂解过程。通过傅立叶红外光谱详细研究了PCS/DVB配比变化对PCS与DVB的交联反应和交联体微观结构的影响,PCS/DVB配比最终决定碳化硅陶瓷的产率,当PCS/DVB配比为1∶0.5时,经1500℃热裂解后碳化硅陶瓷产率最高,达到63.1%,热裂解产物为纳米碳化硅,粒径为10-40nm。用SEM和XRD研究了不同PCS/DVB配比交联体热裂解产物的微观结构和相组成,通过热重分析研究了PCS/DVB配比为1∶0.5时交联体的热裂解过程,在400-800℃,PCS/DVB交联体失重显著,在800℃热裂解过程基本完成,PCS/DVB配比为1∶0.5时能够制备出纳米碳化硅基复合材料。  相似文献   

8.
陶瓷基复合材料制备温度过高一直是制约其引入主动冷却工艺、突破其本征使用温度的主要原因之一。采用差热(TG-DTA)、红外(IR)、X射线衍射(XRD)等分析测试手段,研究了聚碳硅烷(Polycarbosilane,PCS)的裂解及化学转化过程,从理论上说明了先驱体聚碳硅烷(PCS)低温(1000℃)陶瓷化的可行性。结果表明:聚碳硅烷在750℃实现无机化,880℃开始结晶,即聚碳硅烷在高温合金耐受温度范围(1000℃)内,即可实现陶瓷化。以聚碳硅烷(PCS)为先驱体,炭纤维为增强体,采用先驱体浸渍裂解(PIP)工艺低温制备了炭纤维增强碳化硅(C/SiC)陶瓷基复合材料,当制备温度为900℃时,所制备C/SiC复合材料密度为1.70g/cm3,弯曲强度达到657.8MPa,剪切强度为61.02MPa,断裂韧性为22.53MPa.m1/2,并采用扫描电子显微镜(SEM)对复合材料的微观形貌进行了分析。  相似文献   

9.
界面改性涂层对调节复合材料的力学性能起到重要作用。特别是在气相渗硅(GSI)制备C_f/SiC复合材料时,合适的界面改性涂层一方面保护C纤维不受Si反应侵蚀,另一方面调节C纤维和SiC基体的界面结合状况。通过在3D-C纤维预制件中制备先驱体浸渍-裂解(PIP)SiC涂层来进行界面改性,研究了PIP-SiC涂层对GSI C_f/SiC复合材料力学性能的影响。结果表明:无涂层改性的GSI C_f/SiC复合材料力学性能较差,呈现脆性断裂特征,其弯曲强度、弯曲模量和断裂韧性分别为87.6 MPa、56.9GPa和2.1 MPa·m~(1/2)。具有PIP-SiC界面改性涂层的C_f/SiC复合材料力学性能得到改善,PIP-SiC涂层改性后,GSI C_f/SiC复合材料的弯曲强度、弯曲模量和断裂韧性随着PIP-SiC周期数的增加而降低,PIP-SiC为1个周期制备的GSI C_f/SiC复合材料的力学性能最高,其弯曲强度、弯曲模量、断裂韧性分别为185.2 MPa、91.1GPa和5.5 MPa·m~(1/2)。PIP-SiC界面改性涂层的作用机制主要体现在载荷传递和"阻挡"Si的侵蚀2个方面。  相似文献   

10.
以常压合成的低分子量聚碳硅烷(PCS)为原料,分别在470℃高压及常压下反应一定时间,制备了高分子量PCS先驱体。研究了反应时间对:PCS分子量及其分布、软化点、Si—H键含量及可纺性的影响。研究表明,随着反应时间的延长,PCS低分子量部分逐渐减少,高分子量部分逐渐增加,分子量分布逐渐变宽,从而PCS分子量逐渐增大,软化点逐渐升高,Si—H键含量逐渐降低,可纺性逐渐变差。在相同的反应时间下,高压比常压对PCS分子量的增长更有利。在470℃高压或常压下反应时间2~3h时,可获得分子量高、可纺性良好的PCS先驱体。  相似文献   

11.
热模压辅助先驱体浸渍裂解制备Cf/SiC复合材料研究   总被引:4,自引:2,他引:4       下载免费PDF全文
以聚碳硅烷为先驱体,采用热模压辅助先驱体浸渍裂解工艺制备3D-B Cf/SiC复合材料,研究了热模压辅助对3D-B Cf/SiC复合材料致密度和力学性能的影响。结果表明:先驱体浸渍裂解制备陶瓷基复合材料第一次浸渍后引入高温热模压工艺可以改善材料微观结构,显著提高材料的致密度和力学性能。其中1600℃,10MPa,1h下热模压辅助先驱体浸渍裂解6次制备的3D-B Cf/SiC复合材料的密度为1.79g/cm3,弯曲强度高达672MPa,断裂韧性达18.9MPa·m1/2,剪切强度接近50MPa,且具有较好的抗热震性和高温抗氧化性。  相似文献   

12.
具备吸收雷达波功能的三叶型碳化硅纤维研制   总被引:14,自引:3,他引:11       下载免费PDF全文
以聚碳硅烷(PCS)为原料,采用熔融纺丝制备三叶型PCS纤维后,经不熔化和烧成制得三叶型碳化硅纤维。研究了纺丝温度、收丝速度等对纤维异形度的影响,并对预氧化和烧成工艺以及吸波性能等进行了研究。研究表明,较低的纺丝温度、适当高的纺丝压力和较低的转速有利于提高纤维的异形度。与相同当量直径的圆形纤维相比,三叶型碳化硅纤维的抗拉强度平均提高约30%,三叶型碳化硅纤维在8~18 GHz范围内具有较好的吸收雷达波性能。   相似文献   

13.
用聚碳硅烷为先驱体制备SiC/Si3N4纳米复相陶瓷   总被引:6,自引:1,他引:5       下载免费PDF全文
采用聚碳硅烷(PCS) 为先驱体, 利用原位生长法制备SiC/Si3N4 纳米复相陶瓷, 其室温弯曲强度和断裂韧性达到了637M Pa 和8. 10M Pa·m1/2 。研究了材料微观结构的形成及断裂机理,指出在微观结构的形成过程中, 控制SiC 纳米微晶的生成和B-Si3N4 柱状晶的生长是关键, 而增韧补强的主要原因在于形成了晶内型结构和长径比大(大于7. 5) 的Si3N4 柱状晶, 从而改变了断裂机理。   相似文献   

14.
研究了Ti,TiH2等活性填料在聚碳硅烷先驱体裂解制备SiC陶瓷材料中的应用,Ti、TiH2等可增加聚碳硅烷的裂解陶瓷产率,可与N2气氛反应生成氮化物,导致体积膨胀而降低陶瓷的气孔率,提高材料性能。  相似文献   

15.
高性能C/SiC复合材料的快速制备   总被引:21,自引:5,他引:16  
研究开发了“CVI+PIP”组合工艺,本着“低成本、短研制周期,适合批量化生产”的目的,研制的C/SiC复合材料弯曲强度高达561MPa,断裂韧性高达17MPa  相似文献   

16.
T300碳纤维热处理对Cf/SiC复合材料性能的影响   总被引:1,自引:0,他引:1  
以聚碳硅烷先驱体浸渍裂解工艺制备T300碳纤维增强3D Cf/SiC复合材料,研究了T300碳纤维预先热处理对材料性能的影响.结果表明,热处理能够弱化Cf/SiC复合材料中纤维-基体界面结合,减少碳纤维在复合过程的损伤,显著提高复合材料性能.纤维经热处理后制备的Cf/SiC复合材料弯曲强度和断裂韧性分别从未经处理的154MPa,4.8MPa·m1/2提高到437MPa,20.4 MPa·m1/2.  相似文献   

17.
以聚碳硅烷(PCS)/二乙烯基苯(DVB)为先驱体,经8个周期的反复真空浸渍-交联-裂解处理制备出三维编织碳纤维增强碳化硅(3D-B Cf/SiC)复合材料,考察了裂解工艺对材料结构与性能的影响。结果表明:提高裂解升温速率可以提高材料密度,形成较理想的界面结合,从而提高材料的力学性能。裂解温度对材料性能也有较大的影响,Cf/SiC复合材料在第6个周期采用1600℃ 裂解可以弱化纤维与基体之间的界面,提高材料致密度,材料的力学性能也得到较大改善。裂解升温速率为15℃/min,第6个周期采用1600℃裂解制备的Cf/SiC材料性能较好,弯曲强度达到556.7 MPa。   相似文献   

18.
Cf/SiC制备过程中纤维热应力损伤研究   总被引:6,自引:2,他引:4       下载免费PDF全文
采用束丝碳纤维和聚碳硅烷先驱体浸渍裂解工艺制成Cf/SiC丝束,并进行了分析表征,研究了其中的纤维受损情况。实验结果表明,由于先驱体聚碳硅烷在浸渍裂解时倾向于以纤维为依托进行热解,并且其中较多量的氧及杂质的存在将对纤维造成损伤,因而会形成较强的纤维基体界面;纤维基体热膨胀系数失配等因素造成的热应力将使纤维进一步受损。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号