首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用细观力学方法,建立了纤维增强复合材料(FRC)包含基体微裂纹和纤维/基体脱粘的热胀/冷缩理论模型。模型考虑了基体、界面中不同分布取向的微裂纹在升温和降温过程中张开、闭合情况的差异,及其对复合材料平均热胀/冷缩系数(CTE/CTC)的影响,同时还考虑了细观应力分布不均匀的因素。建立了细观有限元模型对理论模型进行验证。研究发现:复合材料损伤后CTE和CTC不一致,且取决于损伤模式:基体微裂纹损伤使得复合材料的横向CTE高于无损材料,而横向CTC低于无损材料,但对纵向CTE/CTC影响不大;纤维界面脱粘能较明显地减小复合材料的纵向CTC,但对横向CTC的影响可忽略。  相似文献   

2.
The coefficient of thermal expansion (CTE) of Al-based metal matrix composites containing 70 vol.% SiC particles (AlSiC) has been measured based on the length change from room temperature (RT) to 500 °C. In the present work, the instantaneous CTE(T) of AlSiC is studied by thermo-elastic models and micromechanical simulation using finite element analysis in order to explain abnormalities observed experimentally. The CTE(T) is predicted according to analytical thermo-elastic models of Kerner, Schapery and Turner. The CTE(T) is modelled for heating and cooling cycles from 20 °C to 500 °C considering the effects of microscopic voids and phase connectivity. The finite element analysis is based on a two-dimensional unit cell model comparing between generalized plane strain and plane stress formulations. The thermal expansion behaviour is strongly influenced by the presence of voids and confirms qualitatively that they cause the experimentally observed decrease of the CTE(T) above 250 °C.  相似文献   

3.
C.F. Deng  Y.X. Ma 《Materials Letters》2008,62(15):2301-2303
The coefficient of thermal expansion (CTE) of aluminum matrix composite reinforced with 1.0wt.% multi-wall carbon nanotubes (MWNTs) fabricated by cold isostatic pressing and hot squeeze technique was measured between 25 and 400 °C with a high-precision thermomechanical analyzer, and compared with those of pure aluminum and 2024Al matrix fabricated under the same processing. The results show that the CTE of the composite obviously reduces in relation to those of pure aluminum and 2024Al matrix due to the introduction of MWNTs. The addition of 1.0wt.% MWNTs to 2024Al matrix decreases the CTE by as much as 12% and 11% compared with those of pure aluminum and 2024Al matrix at 50 °C, respectively, which indicates that carbon nanotube reinforced metal matrix composite may be a promising materials with low CTE.  相似文献   

4.
Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction)of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE)and thermal conductivity.Thermo-physical properties have been measured in both, longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K)in longitudinal orientation and(14.98×10-6/K)in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K)in longitudinal orientation and(58.2 W/m·K)in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.  相似文献   

5.
Continuous carbon-fibre-reinforced copper-matrix composites prepared by diffusion bonding technology have been used for investigation of the coefficient of thermal expansion. For reasons of economy and ease of availability, continuous Torayca T300 fibres have been used for sample preparation. They were coated continuously with copper (galvanically and then chemically) and unidirectional composites were prepared by diffusion bonding in vacuum at 873 K for 30 min. The linear coefficient of thermal expansion (CTE) of samples with different volume fractions of carbon fibres was measured in directions parallel and perpendicular to the fibre direction. The samples were heat-treated for one temperature cycle in the range 293–573 K or cycled three times in a temperature range from 253 to 573 K. Measured CTE values are compared with those predicted by the well-known Schapery model and the model derived by Kural and Min. Better agreement was achieved with the predictions of the longitudinal CTE of the composite. Prediction of the transverse CTE was more difficult because of a lack of knowledge of the transverse CTE of carbon fibres. Models including the transverse CTE of carbon fibres (Kural–Min) gave better results for prediction of the transverse CTE of the unidirectional composite.  相似文献   

6.
The effect of Si3N4 particulates on the thermal expansion coefficient (CTE) of MoSi2 was investigated. It was observed that as the volume percent of Si3N4 increases, the CTE of the MoSi2-Si3N4 composites decreases. In the temperature range 1000–1500 °C, typical of that required for glass melting, about 30–35 vol% Si3N4 particulates are needed in the MoSi2-Si3N4 composites such that the CTE of the composite matches the CTE of Mo.  相似文献   

7.
Lithia-alumina-silica (LAS) with metallic dispersions offers a new approach toward near-zero, isotropic, thermal expansion composites. The metallic phase contributes a positive coefficient of thermal expansion (CTE) to the negative CTE of the glass/ceramic matrix. In addition, the metal will increase the electrical and thermal conductivities over those of the matrix alone. The LAS system offers tailorable negative CTEs and light weight compared to other negative CTE ceramics. The most negative CTE phase is crystalline -eucryptite, whose proportion in an initially glassy matrix can be controlled by heat treatment. Dispersed metal powders were both hot-pressed and cold-pressed and sintered together with LAS matrices prepared by sol gel methods. Super Invar powder was studied for its minimal CTE mismatch, while titanium powders offered a compromise between light weight and low CTE. An ultralow-expansion (ULE) glass- and linear variable differential transducer (LVDT)-based differential dilatometer was developed for rapid screening of compositions, while a double-laser Michelson interferometer was used for precise near-zero CTE measurements. The reinforced -eucryptite glass/ceramic matrix exhibited both a U-shaped L/L curve with temperature and some thermal hysteresis, depending on the fabrication and heat treatment sequences. The temperature of the zero-CTE portion of this curve was found to change with increasing titanium powder content. Results are also given for mixtures of Super Invar powders in ULE glass and -eucryptite matrices. Negative CTEs in a LAS matrix above ambient temperatures were more difficult to obtain than below, although the use of petalite (high-silica LAS) appears promising.Paper presented at the Ninth International Thermal Expansion Symposium, December 8–10, 1986, Pittsburgh, Pennsylvania, U.S.A.  相似文献   

8.
Ba1.5-xSrxZr4P5SiO24 compounds withx = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), withx = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly,x = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign.X = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials  相似文献   

9.
采用热压法将拥有超高导热率和负热膨胀系数(CTE)的中间相沥青基短碳纤维(CFs)与Cu复合,并利用化学气相沉积技术对CFs镀Cr以改善其与Cu的结合状况,研究了所制备的镀Cr CFs/Cu复合材料的显微结构与热性能。结果表明:在制备中Cr层的大部分与CFs表层的C反应形成连续、均匀的界面薄层Cr7C3,少量的扩散于Cu基体中,使CFs与Cu之间的界面由结合极差的机械结合转化成良好的冶金结合,有效提升了复合材料的热性能。CFs含量为40vol%~55vol%时,镀Cr CFs/Cu复合材料致密度高于97.5%,平面方向上的热导率达393~419 W(mK)-1,平面方向的CTE在5.1×10-6~8.4×10-6 K-1之间。高的热导率、低的CTE以及优良的可加工性能使其成为极有潜力的电子封装材料。  相似文献   

10.
环氧树脂基体的热膨胀系数(CTE)对碳纤维增强环氧树脂层状材料的性能影响巨大,如何降低环氧树脂基体的CTE是提高碳纤维增强环氧树脂复合材料低温使用性能的关键。本研究采用聚对苯二甲酸丁二醇酯(PBT)、聚碳酸酯(PC)和聚醚酰亚胺(PEI)3种热塑性塑料改性环氧树脂,研究了这3种热塑性塑料对环氧树脂基体CTE的影响。结果表明:这3种热塑性塑料分子链中的羰基在环氧树脂固化过程中可与环氧分子侧链上的羟基形成氢键作用,从而加强了热塑性塑料与环氧树脂的界面作用;采用这3种热塑性塑料改性环氧树脂均可提高环氧树脂基体的玻璃化转变温度;相对于纯环氧树脂,PBT、PEI和PC改性的环氧树脂在玻璃化转变温度下的CTE分别降低了14.99%、17.44%和23.96%,但在玻璃化转变温度上的CTE均高于纯环氧树脂。  相似文献   

11.
Residual stresses have been determined using X-ray diffraction in two different metal matrix composites, viz. a squeeze-cast Al-2%Mg matrix with 10, 20 or 26 vol.% Al2O3 fibres and an extruded AA 6061 alloy with 25 vol.% SiC whiskers. The composites have been studied after thermal cycling between 240 or 250 °C and room temperature succeeded in some cases by quenching to liquid nitrogen temperature. On the squeeze-cast composite, stresses were measured at room temperature and in situ at 240 °C. X-ray stress determinations were compared with the stress values calculated by a modified Eshelby model for equivalent inclusions. By the model, the stresses can be accurately predicted for both composite systems. Thermally induced plastic relaxation reduces the residual stresses. The degree of reduction depends on the reinforcement volume fraction, the difference in coefficient of thermal expansion between the phases and the magnitude of the temperature drop. At elevated temperature the stresses are less responsive to reiterated quenching and heating.  相似文献   

12.
The thermal aging of a glass matrix composite reinforced by short carbon fibres as well as by ZrO2 particles (hybrid composite) was investigated at temperatures in the range 500–700 °C for exposure durations of 24 h in air. The mechanical properties of as-received and aged samples were evaluated at room temperature by using the three-point flexure chevron notch technique. The fracture toughness values of as-received specimens were in the range 2.6–6.4 MPa m1/2. Fracture toughness was affected by the thermal aging conditions. For thermal aging at temperatures <700 °C, degradation of fibre–matrix interfaces occurred and therefore the apparent fracture toughness and flaw tolerant resistance decreased. For the most severe ageing conditions tested (700 °C/24 h), fracture toughness values dropped to 0.4 MPa m1/2. Significant degradation of the material was detected for this aging condition, mainly characterised by porosity formation in the matrix as a result of softening of the glass and oxidation of the carbon fibres.  相似文献   

13.
3D C/C复合材料的热膨胀性能   总被引:1,自引:0,他引:1  
通过测定热膨胀系数(CTE),分析了不同密度以及高温处理前后热解炭基三维编织炭/炭复合材料(3DC/C复合材料)的热膨胀行为,并与PAN基炭纤维以及热解炭的热膨胀性能作了比较。结果表明:PAN基炭纤维在1200℃以后,出现明显的负膨胀。从室温到100℃,C/C复合材料呈负膨胀状态,CTE与密度成正比;从100℃到1000℃,C/C复合材料的CTE-温度曲线基本遵循热解炭基体的热膨胀规律变化;超过1000℃以后,CTE-温度曲线出现峰值,表明热解炭的膨胀受纤维的限制。复合材料的热膨胀行为由纤维和基体二者决定。  相似文献   

14.
X.X. Chu  Z.X. Wu  R.J. Huang  Y. Zhou 《低温学》2010,50(2):84-3397
Polyetheretherketone (PEEK) has been widely used as matrix material for high performance composites. In this work, 30% chopped glass fibers reinforced PEEK composites were prepared by injection molding, and then the tensile, flexural and impact properties were tested at different temperatures. The modulus, strength and specific elongation of glass fibers reinforced PEEK at room temperature, 77 K and 20 K have been compared. And the fracture morphologies of different samples were investigated by scanning electron microscopy (SEM). The results showed a dependence of mechanical properties of glass fibers reinforced PEEK composites on temperature. The coefficient of thermal expansion of unfilled PEEK and glass fibers reinforced PEEK were also investigated from 77 K to room temperature. The results indicated that the thermal expansion coefficient (CTE) of PEEK matrix was nearly a constant in this temperature region, and it can be significantly decreased by adding glass fibers.  相似文献   

15.
为了使微波基板材料与Cu金属衬底的热膨胀性能匹配,对陶瓷/聚四氟乙烯(PTFE)微波复合基板材料的热膨胀性能进行了研究。采用湿法工艺制备了以SiO2和TiO2为填料的SiO2-TiO2/PTFE复合材料,研究了复合材料密度、填料粒度和填料体积分数对SiO2-TiO2/PTFE复合材料热膨胀性能的影响。结果表明,当SiO2的体积分数由0增至40%(TiO2 :34%~26%)时,SiO2-TiO2/PTFE复合材料的线膨胀系数(CTE)由50.13×10-6 K-1减小至10.03×10-6K-1。陶瓷粉体粒径和复合材料密度减小会导致CTE减小。通过ROM、Turner和Kerner模型计算CTE发现,ROM和Kerner模型与实验数据较相符,而实验值与Turner模型预测值之间的差异随PTFE含量的升高而逐渐增大。  相似文献   

16.
The purpose of this study is to achieve an optimum fabrication condition for the continuous carbon fiber reinforced PEEK matrix composites based on a micro-braiding fabrication method. The composite plates were fabricated at three processing temperatures (380, 410 and 440 °C) and three holding times (20, 40 and 60 min), respectively, with a total number of nine different fabrication conditions, and their bending properties were investigated in terms of thermal and fracture characterizations. As a result, the bending performance of the fabricated composites was significantly affected at the 440 °C temperature. Although no significant change in the bending performance was seen at the 380 and 410 °C with all the holding times, the thermal and fracture characterizations implied a degradation of the PEEK matrix property during the fabrication process. In order to avoid the matrix degradation and the decrease of mechanical properties, a lower fabrication temperature with a shorter holding time should be recommended for the carbon/PEEK composites fabricated by the micro-braiding method.  相似文献   

17.
《Composites Part A》2002,33(1):133-136
This paper presents thermal expansion data for cross-ply and woven copper matrix–carbon fibre composites (Cu–Cf MMCs) that were prepared by diffusion bonding. Thermal expansion was measured in two perpendicular in-plane directions of plate samples. For cross-ply samples (57 vol.%fibres) the mean coefficient of thermal expansion (CTE) between −20 and 300°C changed from approximately 6.5×10−6/°C to 3.5×10−6/°C during heating/cooling. The in-plane CTE increases with decreasing fibre content. Composites with woven arrangement of carbon fibres show a slightly higher CTE at elevated temperature.  相似文献   

18.
本文作者研究了600℃水淬和600℃退火处理的碳化硅晶须增强铝基复合材料的热膨胀行为,阐述两者热膨胀行为与内应力的内在关系。结果表明:淬火后复合材料基体的位错密度、内应力、及材料的有效屈服强度较高;而退火后复合材料基体的位错密度、内应力、及材料的有效屈服强度较低。当材料在600℃淬火后,升温过程中材料的热膨胀系数曲线在80℃和245℃各出现一个峰值,且后者明显高于前者;而600℃退火后材料的热膨胀系数曲线只在80℃出现一个波峰,且其峰值低于淬火材料相应的峰值。分析表明:材料热膨胀系数曲线出现的第一个峰是基体内拉应力释放的结果;而淬火后材料热膨胀系数曲线出现的第二个峰是基体压应力释放速率的标志。  相似文献   

19.
This paper presents a thermal finite element analysis (FEA) of a unidirectional carbon fibre reinforced vinylester urethane hybrid matrix system. The evolution of the thermal residual stresses due to the mismatch in the coefficient of thermal expansion (CTE) of the single components in the cooling phase have been investigated. Additionally, the cure volume shrinkage was implemented into the FE-model. The model allows the transition of the homogeneous unidirectional composite material properties on a microscopic spot, where the properties of the fibres and the matrix can be considered separately. It could be shown, that the cure volume shrinkage (CVS) has a dramatic effect on the fibre/matrix interface region due to radial compression stresses along the fibre. Further, this may lead to microcracking or fibre/matrix debonding before any kind of load is applied to the material.  相似文献   

20.
《Strain》2018,54(1)
High‐throughput, high‐accuracy determination of thermal deformation and coefficient of thermal expansion (CTE) of carbon fibre–epoxy composites using 2D‐digital image correlation (2D‐DIC) is described. With the aid of a specially designed ultra‐stable and high fidelity imaging system, which integrates a high‐quality bilateral telecentric lens with monochromatic blue light illumination, surface images of multiple samples heated by a heating furnace can be captured simultaneously. The images of these samples at different temperatures are processed by advanced DIC algorithm to extract the thermal strains and the CTE of isotropic Al alloy, anisotropic unidirectional, and bidirectional carbon fibre–epoxy composites. Pure thermal expansions of these samples obtained after removing the small rigid‐body rotations clearly indicate the isotropic and anisotropic expansions of these samples. The well‐agreed results with literature values demonstrate the effectiveness and practicality of the proposed method for high‐throughput and high‐accuracy CTE measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号