首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration profile in a laminar flow of the diluent of a parallel-plate electrodialysis stack is derived by assuming operation at the limiting current density. The Nusselt mass transfer number is found to depend on the Reynolds number, the Schmidt number and the dimensionless hydraulic equivalent diameter according to (Nu)theo. = 3.7 · (Re · Sc · de/L)1/3. An empirical correlation of the Reynolds number, the Schmidt number, and the shape factor of the electrodialysis cell, with the ionic mass transfer rate in ion exchange membrane electrodialysis is obtained by measuring the limiting current densities at various conditions. The resulting empirical mass-transfer correlation, (Nu)exp. = 3.91 · Re0.333 · Sc0.328 · (de/L)0.352, holds for sodium acetate as dialysate at concentrations ranging from 0.0106 to 0.0508 kmol/m3, viscosities ranging from 0.608 to 0.926 mPa · s, temperatures ranging from 15 to 55°C, axial velocities ranging from 0.341 to 4.55 cm/s, and for cell thicknesses of 0.32 and 0.94 cm, and is found to be in agreement with the equation obtained from theory. The effects of concentration, flow rate and temperature on the limiting current density are also studied. The relationship between the thicknesses of the diffusion layer and the Reynolds number has been analyzed.  相似文献   

2.
The SPEEK/s-TiO2 composite membrane was prepared by blending sulfonated poly(ether ether ketone) (SPEEK) and sulfonated titanium dioxide (s-TiO2) nanoparticles. The important physiochemical parameters such as proton conductivity, water uptake, swelling degree and ion exchange capacity of the composite membrane were measured. The thermal stability and chemical stability were also tested. It was observed that the SPEEK/s-TiO2 composite membrane exhibited the best selectivity (7.13 × 104 S·min·cm−3) accompanying high proton conductivity (0.061 S·cm−1) and low tetravalent vanadium ion (VO2+) permeability (8.55 × 10−7 cm2·min−1) compared with Nafion117, SPEEK and SPEEK/TiO2 membranes. The battery performance with these membranes was characterized by charge–discharge cycling tests and it was found that the SPEEK/s-TiO2 composite membrane showed the highest energy efficiency (EE) up to 82.3%, indicating the SPEEK/s-TiO2 composite membrane is a candidate for vanadium redox flow battery (VRFB) application. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48830.  相似文献   

3.
Abstract

A process for recovery of zinc from acid solution with di(2‐ethyl hexyl phosphoric acid) (D2EHPA) dissolved in iso‐dodecane was carried out at 20°C in a countercurrent tubular membrane extractor using a hollow fiber as solid support. Experiments were performed at different aqueous metal concentrations (0.1–1.0 g/L), pH 0.1–2.1, and D2EHPA concentrations (2–8 v%). It was found that both the flux of metal and the extraction extent was highly influenced by the extractant concentration and the pH of the feed solution. Overall mass transfer coefficients were determined and related to the tube side, the membrane, and the shell side mass transfer by varying the aqueous flow rate (0.38–0.80 L/min) and organic flow rate (0.22–0.57 L/min) in countercurrent flow. The overall mass transfer coefficient for zinc extraction ranged from 6.2×10?6 m/s to 25.3×10?6 m/s. It was concluded that extraction kinetics were a major contributor to the overall resistance to mass transfer.  相似文献   

4.
Experiments on the absorption of CO2 into a hollow fiber contained liquid membrane absorber were performed. The feed gas was a mixture of CO2 and N2, absorbent liquid was 2-amino-2-methyl-l-propanol and the hollow fiber was a microporous hydrophobic polytetrafluoroethylene membrane. Outlet concentration of CO2 from the absorber decreased as absorbent concentration increased, gas flow rate increased and were held constant for speed of agitation, but had a maximum value in the range of inlet concentration of CO2 from 5 to 40 mole%. The reaction rate constant obtained for CO2-amine system was 231 I/mol · s at 25 °C using a flat stirred vessel, and the membrane-side-mass-transfer coefficient was 1.217 × 10−5 mol/cm2 · s · atm in CO2/N2-amine system. A diffusion model based on mass transfer with fast-reaction was proposed to predict the performance of the absorber.  相似文献   

5.
A method of supplying CO2 to photosynthetic algal cultures was developed based on mass transfer measurements of CO2 through microporous hydrophobic hollow fibres for various gas and liquid flow rates. A mathematical model was derived to describe the mass transfer. The designed hollow fibre module led to overall mass transfer coefficient values ranging from 1·26 × 10−3 to 2·64 × 10−3 cm s−1. Higher efficiencies of the CO2 transmission were obtained at high liquid flow rates and low gas flow rates. The use of microporous hydrophobic hollow fibres enabled an enhancement of the carbon dioxide transfer per area of membrane surface by a factor of 10, in comparison to operation with silicone tubing. The hollow fibre module was operated in an external bypass to a 1 dm3 microalgae culture vessel. In this system the algal growth pattern was similar to that obtained with a control culture where CO2 was bubbled. However, the dissolved oxygen concentration was always lower in the vessel in which CO2 was supplied by the module. © 1998 SCI.  相似文献   

6.
《分离科学与技术》2012,47(3):512-532
Abstract

Ion exchange equilibria and kinetics are determined for lysine adsorption on the strong acid cation exchanger DIAION SK‐1B at temperatures of 25, 40, and 60°C. The ion exchange equilibrium is found to be independent of temperature. Conversely, the kinetics of ion exchange increases dramatically as the temperature is increased. Average ion exchange selectivity coefficients of 6.0 g/cm3 and 0.52 are obtained for the ion exchange of divalent and monovalent cationic lysine with hydrogen ion, respectively. Resin phase diffusivities are determined by fitting batch binary ion‐exchange data with a mass transfer model based on the Nernst‐Planck equations. As the temperature is increased from 25 to 60°C, the resin phase diffusivity increases from 0.04×10?6 to 0.14×10?6 cm2/s for divalent lysine and from 0.16×10?6 to 0.55×10?6 cm2/s for monovalent lysine. The combination of temperature‐independent ion exchange equilibria and faster mass transfer at higher temperatures results in higher dynamic binding capacity and more efficient desorption of lysine when ion exchange is operated at an elevated temperature. This behavior is confirmed by means of column adsorption/desorption experiments whose results are found to be in agreement with a model incorporating the equilibrium and mass transfer data obtained in this work.  相似文献   

7.
The kinetic parameters for Ag+/Ag and Cu2+/Cu reactions at the equilibrium potential and in the absence of dc polarisation have been obtained using the faradaic rectification method at audio frequencies. The values of transfer coefficients, ion exchange current densities and apparent rate constants, obtained for the two reactions at 27°C using 1·0mM of each of the Ag+ and Cu2+ in 1·0M KNO3, are respectively 0·22; 7·3mA/cm2; 3·6·10?3 cm/s and 0·45; 10·7 mA/cm2; 1·1×10?4cm/s. These data are comparable to those reported in the literature. For obtaining reliable and reproducible results for the studies with metal/metal ion reactions suitable experimental conditions have been described.  相似文献   

8.
Rates of electropolishing of vertical copper cylinders with active ends in H3PO4 were studied by measuring the limiting current under natural convection. Variables studied were H3PO4 concentration, cylinder diameter and aspect ratio. The rate of polishing of the whole cylinder was represented by the mass transfer equation $$Sh = 0.33(Sc Gr)^{0.32}$$ for the range 1.17 × 1010 < Sc Gr < 5.11 × 1011. Rates of mass transfer were measured also at vertical cylinder with insulated ends, and the upward facing surface (disc). Data for the vertical cylindrical surface were represented for the range 8.75 × 109 < Sc Gr < 1.1 × 1012 by the equation $$Sh = 1.206(Sc Gr)^{0.255}$$ while data at the upward facing disc were correlated for the range 0.11 × 1010 < Sc Gr < 46 × 1010 by the equation $$Sh = 0.17Sc^{0.396} (Sc Gr)^{0.146}$$ A comparison between the measured rate of mass transfer at the whole cylinder and the value calculated by adding the rates of mass transfer at the separate surfaces of the cylinder shows that the measured value deviates from the calculated value, the degree of deviation increases with increasing Sc × Gr. Deviation was attributed to flow interaction at the different cylinder surfaces.  相似文献   

9.
A model for the adsorption of gold from I2/I? aqueous solutions onto a cellulose acetate (CA)‐polyaniline (PANI) porous membrane is presented. The adsorption of gold is represented by an ion‐exchange overall reaction in which AuI2? ions replace the Cl? ions at the active sites of the polyaniline matrix. The model incorporates the external mass transfer of AuI2? from the bulk solution to the membrane surface, followed by the pore diffusion of AuI2? to reach the active sites in the membrane. The overall ion‐exchange reaction was assumed to achieve local instantaneous equilibrium. Verification of the kinetic model with the experimental data showed that the effective diffusivity of AuI2? within the membrane is about 8.3 × 10?6 cm2/s. The potential applications of the present formulation are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The paper presents experimental results concerning the removal of cupric ions from a simulated wastewater effluent consisting of copper sulphate solution in a gas sparged fluidized bed of cation exchange resin. Variables investigated were: superficial gas velocity, particle diameter, bed height and the physical properties of the solution (adding glycerol). These variables were studied with respect to their effect on the solid-liquid mass transfer coefficient. The coefficient was found to increase with increasing superficial gas velocity. Increasing both particle diameter and bed height were found to reduce the mass transfer coefficient. The experimental data can be correlated by the equation J = 0.68 (Fr Re )–0.143 (dp/d)–0.62 (dp/L)0.55valid for the following conditions: 1430 < Sc < 2488; 0.017 < Fr Re < 1.41; 6.33 × 10–3 < dp/d < 0.021 and 9.5 × 10–3 < dp / L < 0.125.  相似文献   

11.
An analytical solution for a two resistance mass transfer model explaining the adsorption of Astrazone Blue dye (Basic Blue 69) onto Sorbsil silica has been developed. The model includes a film mass transfer coefficient, kf1 = 80 × 10−6cm·s−1, and an internal effective diffusivity, Deff = 18×10−9cm2·s−1 which controls the internal mass transport processes based on a pore diffusion mechanism.  相似文献   

12.
Silicon tetrafluoride SiF4 reacted with aliphatic alcohols ROH to form liquid complex compounds SiF4 · 2ROH. The gas-liquid SiF4(g) -SiF4 · 2ROH(l) systems can be used for separating silicon isotopes. The hydrodynamics and mass transfer of the separation of silicon isotopes in a countercurrent column were studied using SiF4-SiF4 · 2ROH systems based on butanol-1, pentanol-1, and hexanol-1 at 293 K. Corrections were applied to the empirical coefficients in the equations of the dependence of the total holdup of a helical prismatic packing (HPP) and its specific pressure drop on a load in an isotope exchange column. The height equivalent to the theoretical plate (HETP) increased more than twofold in the butanol-1-hexanol-1 homologous series (the flow rate in the column was (3.4 ± 0.2) mmol SiF4/(cm2 min) for the working gas). It was shown using pentanol-1 as a complex-forming agent that the limiting stage of mass transfer during the separation of silicon isotopes was the isotope exchange between SiF4 and the SiF4 · 2ROH complex.  相似文献   

13.
The internal structure design of membrane module is very important for gas removal performance using membrane contactor via physical absorption. In this study, a novel membrane contactor developed by weaving polytetrafluoroethylene (PTFE) hollow fibers was applied to remove CO2 from 60% N2 + 40% CO2 mixture (with CO2 concentration similar to that of biogas) at elevated pressure (0.8 MPa) using water as absorbent. Compared with the conventional module with randomly packed straight fibers, the module with woven PTFE fibers exhibited much better CO2 absorption performance. The weaving configuration facilitated the meandering flow or Dean vortices and renewing speed of water around hollow fibers. Meanwhile, the undesired influences such as channeling and bypassing were also eliminated. Consequently, the mass transfer of liquid phase was greatly improved and the CO2 removal efficiency was significantly enhanced. The effects of operation pressure, module arrangement, feed gas, and water flow rate on CO2 removal were systematically investigated as well. The overall mass‐transfer coefficient (KOV) varied from 1.96 × 10?5 to 4.39 × 10?5 m/s (the volumetric mass‐transfer coefficient KLa = 0.034–0.075 s?1) under the experimental conditions. The CO2 removal performance of novel woven fiber membrane contactor matched well with the simulation results. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2135–2145, 2018  相似文献   

14.
The transient heat transfer behaviour of direct contact condensation of steam in spray cooling water in a packed column was investigated experimentally and theoretically in this work for the first time. A new analysis method of the state equation was applied to analyze the molar quantity variation of steam in the course of the experiment. The results showed that increasing the cooling water flow rate properly could significantly accelerate the steam condensation rate and this was more obvious at the beginning of the operation. The higher the flow rate of the cooling water was, the shorter a time it took for the steam to be completely condensed. When the cooling water flow rate was 840 L/h, the steam was mainly condensed within 13 s, which indicated that it would rapidly handle steam by regulating cooling water flow rate. However, the effect of changing cooling water temperature on steam condensation rate is slight with the cooling water temperature inceasing from 23 °C to 42 °C. The volumetric heat transfer coefficient in this experiment is in the range of 1.47 kW · m?3 · K?1 to 10.93 kW · m?3 · K?1 with the cooling water flow rate inceasing from 120 L/h to 840 L/h, and the maximum uncertainty in the results is 2.2 %.
  相似文献   

15.
The modified zeolite A was prepared by a two‐step crystallization method to remove scale‐forming cations from water and geothermal water. The adsorption kinetics, mechanism and thermodynamics were studied. The calcium ion adsorption capacity of the modified zeolite A was 129.3 mg/g (1 mg/g = 10?3 kg/kg) at 298 K. The adsorption rate was fitted well with pseudo‐second‐order rate model. The adsorption process was controlled by film diffusion at the calcium ion concentration less than 250 mg/L (1 mg/L = 10?3 kg/m3), and it was controlled by intraparticle diffusion at the concentration larger than 250 mg/L. The calculated mass‐transfer coefficient ranged from 2.23 × 10?5 to 2.80 × 10?4cm/s (1 cm/s = 10?2m/s). Dubinin–Astakhov isotherm model could appropriately describe the adsorption thermodynamic properties when combined with Langmuir model. The adsorption process included not only ion exchange but also complexation between calcium and hydroxyl ions. The adsorption was spontaneous and endothermal. The high adsorption capacity indicates that the modified zeolite A is a suitable adsorption material for scale removal from aqueous solution. © 2014 American Institute of Chemical Engineers AIChE J, 61: 640–654, 2015  相似文献   

16.
BACKGROUND: This paper reports an analysis of the mass transfer behaviour of CO2 absorption in hollow fibre membrane modules in parallel and cross‐flow dispositions. The ionic liquid EMISE, 1‐ethyl‐3‐methylimidazolium ethylsulfate, is used to achieve a zero solvent emission process and the experimental results are compared with CO2 permeation through the membrane, without solvent in the lumenside. RESULTS: Overall mass transfer coefficients Koverall, CF = (0.74 ± 0.02) × 10?6 m s?1 and Koverall, PF = (0.37 ± 0.018) × 10?6 m s?1 were obtained for cross‐flow and parallel flow, respectively. These values are one order of magnitude lower than the coefficient obtained in permeability experiments, Koverall, PERM = (6.16 ± 0.1) × 10?6 m s?1, indicating the influence of the absorption in the process. Including the specific surface and gas volume of each contactor in the analysis, a similar value of a first‐order kinetic rate constant, KR = 2.7 × 10?3 s?1 is obtained, showing that the interfacial chemical reaction CO2‐ionic liquid is the slow step in the absorption process. CONCLUSION: An interfacial chemical reaction rate constant KR = 2.7 × 10?3 s?1, describes the behaviour of the CO2 absorption in the ionic liquid EMISE using membrane contactors in parallel and cross‐flow dispositions. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
The extraction rates of amino acids from alkaline aqueous solution into an emulsion liquid membrane containing tri-n-octylmethylammonium chloride as a carrier and Paranox 100 as an emulsifier were measured using a stirred transfer cell. The effects of agitation speed (0·33–0·66 rev s−1), amino acid concentrations (0·5–50 mol m−3) and temperature (10–45°C) on the extraction rates were examined. The results were analyzed by a double-film model. The mass transfer coefficients of amino acids (0·26–1·58×10−5 m s−1) and their complexes (0·60–1·72×10−5 m s−1) were found to correlate well with the hydrophobicities of the amino acids. It was found that the surfactant layer influenced the mass transfer processes of both amino acids in the aqueous film and their complexes in the organic film. The permeation of amino acids with a large hydrophobicity through the emulsion liquid membrane was promoted by both high distribution and larger mass transfer rates. © 1998 Society of Chemical Industry  相似文献   

18.
This work reports the viability and modelling of the removal of Cr(VI) from polluted groundwaters by means of ion exchange using the resin Lewatit MP‐64. Feed groundwaters that contained Cr(VI) at an average concentration of 2431 mg dm?3 and 1187 mg dm?3 of chloride and 1735 mg dm?3 of sulfate as main anions were acidified to a pH of 2.0 prior to the removal process. Dynamic experiments were carried out in a fixed bed column with feed waters at flow rates in the range of 2.78 × 10?7 m3 s?1 to 5.55 × 10?7 m3 s?1. Regeneration was achieved with NaOH (2 mol dm?3). From the experimental results, the equilibrium of the ion exchange reaction was successfully modelled, obtaining an equilibrium constant (KAB) = 44.90. Finally, a mass balance that included mass transfer resistances in the liquid and solid phases was developed and from the comparison between simulated and experimental data the value of the effective intraparticle diffusivity (Ds) was determined as 1.43 × 10?12 m2 s?1. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
Quaternized poly(vinyl alcohol)/chitosan (QPVA/CS) composite membranes were prepared by solution casting method with AlCl3·6H2O aqueous solution as solvent for CS and glutaraldehyde as a crosslinker. The crystalline, thermal and mechanical properties of the QPVA/CS composite membranes were studied by Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, thermogravimetry and tensile test measurements, respectively. The composite membranes were immersed in potassium hydroxide aqueous solution to form polymer electrolyte membranes. The alkaline uptake, swelling ratio, ion conductivity and methanol permeability of the electrolyte membranes were studied. The experimental results indicated that aluminum chloride hexahydrate (AlCl3·6H2O) had a positive effect on the mechanical properties of the QPVA/CS composite membrane. The elongation-at-break of this membrane reached the maximum of 401.0%. The alkaline uptake and swelling ratio of the composite membranes decreased. With the addition of 30 wt% AlCl3·6H2O, the composite membrane showed the ion conductivity and methanol permeability of 1.82 × 10?2 S cm?1 and 2.17 × 10?6 cm2 s?1, respectively. These values were higher than those of the membrane with acetic acid as the solvent for CS. The selectivity of the QPVA/CS membrane could reach 8.39 × 103 S s cm?3. This study showed that with AlCl3·6H2O as the solution for CS, the high performance QPVA/CS composite alkaline polymer electrolyte membrane could be prepared.  相似文献   

20.
Blood oxygenators are used to saturate oxygen levels and remove carbon dioxide from the body during cardiopulmonary bypass. Although the natural lung is hydrophilic, commercially used oxygenator materials are hydrophobic. Surface hydrophobicity weakens blood compatibility, as long-term contact with the blood environment may lead to different degrees of blood activity. Polysulfone may be considered an alternative hydrophilic material in the design of oxygenators. Therefore, it may be directed toward developing hydrophilic membranes. This study aims to investigate the feasibility of achieving blood gas transfer with a polysulfone-based microporous hollow fiber membrane and compare it with the commercially available polypropylene membranes. Structural differences in the membrane morphology, surface hydrophilicity, tortuosity, mass transfer rate, and material properties under different operation conditions of temperature and flow rates are reported. The polysulfone membrane has a water contact angle of 81.3°, whereas a commercial polypropylene membrane is 94.5°. The mass transfer resistances (s/m) for the polysulfone and polypropylene membranes are calculated to be 4.8 × 104 and 1.5 × 104 at 25°C, respectively. The module made of polysulfone was placed in the cardiopulmonary bypass circuit in parallel with the commercial oxygenator, and pH, pO2, pCO2 levels, and metabolic activity were measured in blood samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号