首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports the synthesis of proton-conducting BaZr0.2Ce0.8−xYxO3−δ (x = 0–0.4) oxides by using a combination of citrate-EDTA complexing sol–gel process and composition-exchange method. Compared to those oxides prepared from conventional sol–gel powders, the sintered BaZr0.2Ce0.8−xYxO3−δ pellets synthesized by sol–gel combined with composition-exchange method are found to exhibit improved sinterability, a higher relative density, higher conduction, and excellent thermodynamic stability against CO2. Moreover, the Pt/electrolyte/Pt single cell using such a BaZr0.2Ce0.6Y0.2O3−δ electrolyte shows an obviously higher maximum powder density in the hydrogen-air fuel cell experiments. Based on the experimental results, we discuss the improvement mechanism in terms of calcined particle characteristics. This work demonstrates that the BaZr0.2Ce0.8−xYxO3−δ oxides synthesized by sol–gel combined with composition-exchange method would be a promising electrolyte for the use in H+-SOFC applications. More importantly, this new fabrication approach could be applied to other similar ABO3-perovskite material systems.  相似文献   

2.
Mixed rare-earth (La, Pr)0.8Sr0.2FeO3−δ–Sm0.2Ce0.8O2−δ (LPSF–SDC) composite cathode was investigated for proton-conducting solid oxide fuel cells based on protonic BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte. The powders of La0.8−xPrxSr0.2FeO3−δ (x = 0, 0.2, 0.4, 0.6), Sm0.2Ce0.8O2−δ (SDC) and BaZr0.1Ce0.7Y0.2O3−δ (BZCY) were synthesized by a citric acid-nitrates self-propagating combustion method. The XRD results indicate that La0.8−xPrxSr0.2FeO3−δ samples calcined at 950 °C exhibit perovskite structure and there are no interactions between LPSF0.2 and SDC at 1100 °C. The average thermal expansion coefficient (TEC) of LPSF0.2–SDC, BZCY and NiO-BZCY is 12.50 × 10−6 K−1, 13.51 × 10−6 K−1 and 13.47 × 10−6 K−1, respectively, which can provide good thermal compatibility between electrodes and electrolyte. An anode-supported single cell of NiO-BZCY|BZCY|LPSF0.2–SDC was successfully fabricated and operated from 700 °C to 550 °C with humidified hydrogen (∼3% H2O) as fuel and the static air as oxidant. A high maximum power density of 488 mW cm−2, an open-circuit potential of 0.95 V, and a low electrode polarization resistance of 0.071 Ω cm2 were achieved at 700 °C. Preliminary results demonstrate that LPSF0.2–SDC composite is a promising cathode material for proton-conducting solid oxide fuel cells.  相似文献   

3.
Yttria-doped strontium titanium oxide (Sr0.92Y0.08TiO3−δ; SYT) was investigated as an alternative anode material for solid oxide fuel cells (SOFCs). The SYT synthesized by the Pechini method exhibits excellent phase stability during the cell fabrication processes and SOFC operation and good electrical conductivity (about 0.85 S/cm, porosity 30%) in reducing atmosphere. The performance of SYT anode is characterized by slow electrochemical reactions except for the gas-phase diffusion reactions. The cell performance with the SYT anode running on methane fuel was improved about 5 times by SDC film coating, which increased the number of reaction sites and also accelerated electrochemical reaction kinetics of the anode. In addition, the SDC-coated SYT anode cell was stably operated for 900 h with methane. These results show that the SDC-coated SYT anode can be a promising anode material for high temperature SOFCs running directly on hydrocarbon fuels.  相似文献   

4.
The cathode reaction mechanism of porous Sm0.5Sr0.5CoO3−δ, a mixed ionic and electronic conductor (MIEC), is studied through a comparison with the composite cathode Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9. First, the cathodic behaviour of porous Sm0.5Sr0.5CoO3−δ and Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9 are observed for micro-structure and impedance spectra according to Sm0.2Ce0.8O1.9 addition, thermal cycling and long-term properties. The cathode reaction mechanism is discussed in terms of frequency response, activation energy, reaction order and electrode resistance for different oxygen partial pressures p(O2) at various temperatures. Three elementary steps are considered to be involved in the cathodic reaction: (i) oxygen ion transfer at the cathode-electrolyte interface; (ii) oxygen ion conduction in the bulk cathode; (iii) gas phase diffusion of oxygen. A reaction model based on the empirical equivalent circuit is introduced and analyzed using the impedance spectra. The electrode resistance at high frequency (Rc,HF) in the impedance spectra represents reaction steps (i), due to its fast reaction rate. The electrode resistance at high frequency is independent of p(O2) at a constant temperature because the semicircle of Rc,HF in the complex plane of the impedance spectra is held constant for different values of p(O2). Reaction steps (ii) and (iii) are the dominant processes for a MIEC cathode, according to the analysis results. The proposed cathode reaction model and results for a solid oxide fuel cell (SOFC) well describe a MIEC cathode with high ionic conductivity, and assist the understanding of the MIEC cathode reaction mechanism.  相似文献   

5.
A cobalt-free composite Sm0.5Sr0.5Fe0.8Cu0.2O3−δ-Ce0.8Sm0.2O2−δ (SSFCu-SDC) is investigated as a cathode for proton-conducting solid oxide fuel cells (H-SOFCs) in intermediate temperature range, with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) as the electrolyte. The XRD results show that SSFCu is chemically compatible with SDC at temperatures up to 1100 °C. The quad-layer single cells of NiO-BZCYYb/NiO-BZCYYb/BZCYYb/SSFCu-SDC are operated from 500 to 700 °C with humidified hydrogen (∼3% H2O) as fuel and the static air as oxidant. It shows an excellent power density of 505 mW cm−2 at 700 °C. Moreover, a low electrode polarization resistance of 0.138 Ω cm2 is achieved at 700 °C. Preliminary results demonstrate that the cobalt-free SSFCu-SDC composite is a promising cathode material for H-SOFCs.  相似文献   

6.
The fabrication and electrochemical properties of graded La0.7Sr0.3CuO3−δ–Sm0.2Ce0.8O2−δ (LSCu–SDC) composite cathodes were investigated in this paper. The phase composition, microstructure and electrochemical properties of the electrodes were characterized using X-ray diffraction (XRD), electron microscopy, electrochemical impedance spectroscopy (EIS) and cathodic polarization examinations. The results showed that the triple-layer graded cathode had super electrochemical performance comparing with the monolayer cathode. The graded LSCu–SDC cathode showed a polarization resistance of 0.094 Ωcm2, a value much lower than the monolayer LSCu cathode of 0.234 Ωcm2 at 800 °C in air. The current density of the graded cathode was 0.341 A cm−2, more than double higher than monolayer LSCu of 0.146 A cm−2 at an overpotential of 30 mV. The improved electrochemical performance could be attributed to the improved physical and chemical compatibility of the cathode layers in graded compositions with SDC electrolyte as well as the enlargement of triple-phase boundary for oxygen reduction.  相似文献   

7.
A Sm0.5Sr0.5CoO3−δ-Ce0.8Sm0.2O2−δ (SSC-SDC) composite is employed as a cathode for proton-conducting solid oxide fuel cells (H-SOFCs). BaZr0.1Ce0.7Y0.2O3−δ (BZCY) is used as the electrolyte, and the system exhibits a relatively high performance. An extremely low electrode polarization resistance of 0.066 Ω cm2 is achieved at 700 °C. The maximum power densities are: 665, 504, 344, 214, and 118 mW cm−2 at 700, 650, 600, 550, and 500 °C, respectively. Moreover, the SSC-SDC cathode shows an essentially stable performance for 25 h at 600 °C with a constant output voltage of 0.5 V. This excellent performance implies that SSC-SDC, which is a typical cathode material for SOFCs based on oxide ionic conductor, is also a promising alternative cathode for H-SOFCs.  相似文献   

8.
In order to develop a simple and cost-effective route to fabricate proton-conductor intermediate-temperature SOFCs, a dense BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte was fabricated on a porous anode by in situ drop-coating. The PrBaCuFeO5+δ (PBCF) composite oxide with layered perovskite structure was synthesized by auto ignition process and examined as a novel cathode for proton-conductor IT-SOFCs. The single cell, consisting of PBCF/BZCY/NiO-BZCY structure, was assembled and tested from 600 to 700 °C with humidified hydrogen (∼3% H2O) as the fuel and the static air as the oxidant. An open-circuit potential of 1.01 V and a maximum power density of 445 mW cm−2 at 700 °C were obtained for the single cell. A relatively low interfacial polarization resistance of 0.15 Ω cm2 at 700 °C indicated that the PBCF is a promising cathode for proton-conductor IT-SOFCs.  相似文献   

9.
Cathode reaction models for solid oxide fuel cells with proton conducting electrolyte (H-SOFC) are proposed, and the reacting orders for each elementary step with respect to oxygen and water vapor partial pressure are calculated. The limiting steps of cathode reactions are investigated with Sm0.5Sr0.5CoO3−δ (SSC)-BaCe0.8Sm0.2O3−δ (BCS) composite cathodes. The results suggest that the migration of protons to TPBs and the surface diffusion of might be the limiting reactions for SSC-BCS composite cathodes in wet atmosphere, while the oxygen ions transferring into electrolyte, the reducing of Oad to , and surface diffusion of might be the limiting reactions for SSC-BCS composite cathode in dry atmosphere.  相似文献   

10.
The Sm0.5Sr0.5CoO3−δ (SSC) with perovskite structure is synthesized by the glycine nitrate process (GNP). The phase evolution of SSC powder with different calcination temperatures is investigated by X-ray diffraction and thermogravimetric analyses. The XRD results show that the single perovskite phase of the SSC is completely formed above 1100 °C. The anode-supported single cell is constructed with a porous Ni-yttria-stabilized zirconia (YSZ) anode substrate, an airtight YSZ electrolyte, a Sm0.2Ce0.8O2−δ (SDC) barrier layer, and a screen-printed SSC-SDC composite cathode. The SEM results show that the dense YSZ electrolyte layer exhibits the good interfacial contact with both the Ni-YSZ and the SDC barrier layer. The porous SSC-SDC cathode shows an excellent adhesion with the SDC barrier layer. For the performance test, the maximum power densities are 464, 351 and 243 mW cm−2 at 800, 750 and 700 °C, respectively. According to the results of the electrochemical impedance spectroscopy (EIS), the charge-transfer resistances of the electrodes are 0.49 and 1.24 Ω cm2, and the non charge-transfer resistances are 0.48 and 0.51 Ω cm2 at 800 and 700 °C, respectively. The cathode material of SSC is compatible with the YSZ electrolyte via a delicate scheme employed in the fabrication process of unit cell.  相似文献   

11.
A cobalt-free Sm0.5Sr0.5FeO3−δ–BaZr0.1Ce0.7Y0.2O3−δ (SSF–BZCY) was developed as a composite cathode material for proton-conducting solid oxide fuel cells (H-SOFC) based on proton-conducting electrolyte of stable BZCY. The button cells of Ni-BZCY/BZCY/SSF–BZCY were fabricated and tested from 550 to 700 °C with humidified H2 (~3% H2O) as a fuel and ambient oxygen as oxidant. An open-circuit potential of 1.024 V, maximum power density of 341 mW cm−2, and a low electrode polarization resistance of 0.1 Ω cm2 were achieved at 700 °C. The experimental results indicated that the SSF–BZCY composite cathode is a good candidate for cathode material.  相似文献   

12.
BaZr0.1Ce0.7Y0.2O3−δ (BZCY)-based proton-conducting solid oxide fuel cells (H-SOFC) with a cobalt-free proton-blocking La0.7Sr0.3FeO3−δ-Ce0.8Sm0.2O2-δ (LSF-SDC) composite cathode were fabricated and evaluated. The effect of firing temperature of the cathode layer on the chemical compatibility, microstructure of the cathode and cathode-electrolyte interface, as well as electrochemical performance of single cells was investigated in detail. The results indicated that the cell exhibited the most desirable performance when the cathode was fired at 1000 °C; moreover, at the same firing temperature, the power performance had the least temperature dependence. With humidified hydrogen (∼2% H2O) as the fuel and ambient air as the oxidant, the polarization resistance of the cell with LSF-SDC cathode fired at 1000 °C for 3 h was as low as 0.074 Ω cm2 at 650 °C after optimizing microstructures of the anode and anode-electrolyte interface, and correspondingly the maximum power density achieved as high as 542 mW cm−2, which was the highest power output ever reported for BZCY-based H-SOFC with a cobalt-free cathode at 650 °C.  相似文献   

13.
SSC (70 wt.% SrSc0.2Co0.8O3−δ)–SDC (30 wt.% Sm0.2Ce0.8O1.9) composite was evaluated as cathode for intermediate-temperature solid-oxide fuel cells. The effect of firing temperature on the chemical interaction between SSC and SDC was characterized by oxygen-temperature programmed desorption (O2-TPD) techniques. Certain type of phase reactions occurred between SSC and SDC at calcination temperatures higher than 950 °C. The conductivity of the composite was measured by a four-prober direct current technique. The electro-catalytic activity of the composite electrode for oxygen reduction was measured by electrochemical impedance spectroscopy (EIS) in a symmetric cell configuration. The electrode fired at 950 °C showed the best performance. By applying the SSC + SDC-composite electrode, a cell with a ∼20-μm thick SDC electrolyte delivered a peak power density of 760 mW cm−2 at 600 °C. This suggested that an SSC + SDC-composite electrode may be a promising cathode for intermediate-temperature solid-oxide fuel cells.  相似文献   

14.
Porous composite cathodes were fabricated by impregnating (La0.74Bi0.10Sr0.16)MnO3−δ (LBSM) electronic conducting structure with the ionic conducting Ce0.8Gd0.2O2−δ (GDC) phase. The ion impregnation of the GDC phase significantly enhanced the electrocatalytic activity of the LBSM electrodes for the O2 reduction reactions, and the ion-impregnated LBSM–GDC composite cathodes showed excellent performance. At 700 °C, the value of the cathode polarization resistance (Rc) was only 0.097 Ω cm2 for an ion-impregnated LBSM–GDC cathode, and the performance was gradually improved by increasing the loading of the impregnated GDC. For the performance testing of single cells, the maximum power density was 1036 mW cm−2 at 700 °C for a cell with the LBSM–GDC cathode. The results demonstrated the unique combination of the LBSM electronic conducting structure with high ionic conducting GDC phase was a valid method to improve the electrode performance, and the ion-impregnated LBSM–GDC was a promising composite cathode material for the intermediate-temperature solid oxide fuel cells.  相似文献   

15.
A cobalt-free cubic perovskite oxide SrFe0.9Sb0.1O3−δ (SFSb) is investigated as a novel cathode for proton-conducting solid oxide fuel cells (H-SOFCs). XRD results show that SFSb cathode is chemically compatible with the electrolyte BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) for temperatures up to 1000 °C. Thin proton-conducting BZCYYb electrolyte and NiO-BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (NiO-BZCYYb) anode functional layer are prepared over porous anode substrates composed of NiO-BZCYYb by a one-step dry-pressing/co-firing process. Laboratory-sized quad-layer cells of NiO-BZCYYb/NiO-BZCYYb/BZCYYb/SFSb are operated from 550 to 700 °C with humidified hydrogen (∼3% H2O) as fuel and the static air as oxidant. An open-circuit potential of 0.996 V, maximum power density of 428 mW cm−2, and a low electrode polarization resistance of 0.154 Ω cm2 are achieved at 700 °C. The experimental results indicate that the cobalt-free SFSb is a promising candidate for cathode material for H-SOFCs.  相似文献   

16.
This study investigates the microstructure and electrochemical properties of Sm0.5Sr0.5Co0.8Cu0.2O3−δ (SSC-Cu) cathode infiltrated with Ce0.8Sm0.2O1.9 (SDC). The newly formed nanosized electrolyte material on the cathode surface, leading the increase in electrochemical performances is mainly attributed to the creation of electrolyte/cathode phase boundaries, which considerably increases the electrochemical sites for oxygen reduction reaction. Based on the experiment results, the 0.4 M SDC infiltration reveals the lowest cathode polarization resistance (RP), the cathode polarization resistances (Rp) are 0.117, 0.033, and 0.011 Ω cm2 at 650, 750, and 850 °C, and the highest peak power density, are 439, 659, and 532 mW cm−2 at 600, 700, and 800 °C, respectively. The cathode performance in SOFCs can be significantly improved by infiltrating nanoparticles of SDC into an SSC-Cu porous backbone. This study reveals that the infiltration approach may apply in SOFCs to improve their electrochemical properties.  相似文献   

17.
Porous La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes are coated with a thin film of Sm0.2Ce0.8O1.95−δ (SDC) using a one-step infiltration process. Examination of the microstructures reveals that small SDC particles are formed on the surface of LSCF grains with a relatively narrow size distribution. Impedance analysis indicates that the SDC infiltration has dramatically reduced the polarization of LSCF cathode, reaching interfacial resistances of 0.074 and 0.44 Ω cm2 at 750 °C and 650 °C, respectively, which are about half of those for LSCF cathode without infiltration of SDC. The activation energies of the SDC infiltrated LSCF cathodes are in the range of 1.42-1.55 eV, slightly lower than those for a blank LSCF cathode. The SDC infiltrated LSCF cathodes have also shown improved stability under typical SOFC operating conditions, suggesting that SDC infiltration improves not only power output but also performance stability and operational life.  相似文献   

18.
The La1.95Ca0.05Ce2O7−δ (LCCO) material is successfully synthesized using the Pechini method. The synthesized powders are exposed to atmospheric CO2 and H2 with 3% H2O at 700 °C. The treated LCCO powders are investigated using X-ray diffraction (XRD) to study the chemical stability. According to the XRD results, LCCO is very stable and shows no reactions with CO2 or H2O. A fuel cell with the LCCO electrolyte is prepared using the suspension spray method and is tested in the range from 600 °C to 700 °C using humidified hydrogen (∼3% H2O) as the fuel and static air as the oxidant. An open-circuit potential of 0.832 V and a maximum power density of 259 mW cm−2 are obtained for a single cell with an interface resistance of 0.23 Ω cm2 at 700 °C.  相似文献   

19.
The chemical compatibility, thermal expansion and electrochemical property measurements of the SrCo0.8Fe0.2O3−δ (SCF)-La0.45Ce0.55O2−δ (LDC) composite cathodes for solid oxide fuel cells (SOFCs) were investigated by X-ray diffraction (XRD), thermal expansion coefficients (TECs) and cathodic polarization measurements together with electrochemical impedance spectroscopy (EIS). The results indicated that LDC had good chemical compatibility with SCF and La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM), and the addition of LDC to SCF markedly reduced the polarization resistance. When the content of LDC reached 50 wt%, the SCF50 cathode showed the best electrochemical performance, with a cathodic overpotential of 0.1 V at the current density of 1102.0 mA cm−2, together with a polarization resistance of 0.149 Ω cm2 at 800 °C. The improved electrochemical performance was attributed to the expansion of the electrochemical reaction region into the electrode, and offering an easier path for the oxygen ion transport. Furthermore, the SCF-LDC composite cathodes match better with the LSGM electrolyte.  相似文献   

20.
Cobalt-free composites Nd0.5Sr0.5Fe0.8Cu0.2O3−δ (NSFCu)–xSm0.2Ce0.8O1.9 (SDC) (x = 0–60 wt%) are investigated as IT-SOFC cathodes. The characteristic properties of cobalt-free composite cathodes comparing to cobalt-based composites are revealed. The DC conductivity and thermal expansion coefficient of the composite cathodes decrease with the content of SDC x, while the polarization resistance Rp shows the least value with addition of 40 wt% of SDC. The power density of the single cell with NSFCu-40% SDC composite cathode improved significantly compared with that of undoped NSFCu cathode, with peak values of 488, 623, 849 and 1052 mW cm−2 at 600, 650, 700, and 750 °C, respectively. Moreover, the performance of the composite cathode is stable within testing period of 370 h at 700 °C, indicating that the NSFCu-40% SDC is an excellent cobalt-free composite cathode applied in IT-SOFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号