共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
显著性提取方法在图像处理、计算机视觉领域有着广泛的应用.然而,基于全局特征和基于局部特征的显著性区域提取算法存在各自的缺点,为此本文提出了一种融合全局和局部特征的显著性提取算法.首先,对图像进行不重叠地分块,当每个图像块经过主成分分析(Principle component analysis,PCA)映射到高维空间后,根据孤立的特征点对应显著性区域的规律得到基于全局特征的显著图;其次,根据邻域内中心块与其他块的颜色不相似性得到基于局部特征的显著图;最后,按照贝叶斯理论将这两个显著图融合为最终的显著图.在公认的三个图像数据库上的仿真实验验证了所提算法在显著性提取和目标分割上比其他先进算法更有效. 相似文献
3.
《计算机应用与软件》2017,(8)
显著性目标检测,在包括图像/视频分割、目标识别等在内的许多计算机视觉问题中是极为重要的一步,有着十分广泛的应用前景。从显著性检测模型过去近10年的发展历程可以清楚看到,多数检测方法是采用视觉特征来检测的,视觉特征决定了显著性检测模型的性能和效果。各类显著性检测模型的根本差异之一就是所选用的视觉特征不同。首次较为全面地回顾和总结常用的颜色、纹理、背景等视觉特征,对它们进行了分类、比较和分析。先从各种颜色特征中挑选较好的特征进行融合,然后将颜色特征与其他特征进行比较,并从中选择较优的特征进行融合。在具有挑战性的公开数据集ESSCD、DUT-OMON上进行了实验,从PR曲线、F-Measure方法、MAE绝对误差三个方面进行了定量比较,检测出的综合效果优于其他算法。通过对不同视觉特征的比较和融合,表明颜色、纹理、边框连接性、Objectness这四种特征在显著性目标检测中是非常有效的。 相似文献
4.
5.
针对图像本身存在噪声和冗余信息而导致分类准确率不高的问题进行了研究,提出一种基于多线索特征融合图像分类算法。通过改进全局显著性和稀有性度量方法得到显著图像;分别在原图像、压缩图像和显著图像上提取方向梯度直方图(Histogram of?Oriented Gradient,HOG)特征;将提取到的特征向量融合;采用基于欧氏距离的二叉树支持向量机(Distance Binary Tree SVM,DBT-SVM)进行图像分类。利用Caltech101和花卉图像数据集进行实验测试,结果表明提出的算法能够有效地提高图像分类的准确率。 相似文献
6.
随着计算机视觉的发展,图像显著区域检测在图像处理领域越来越重要。为了对自然图像中的显著区域进行准确的检测,提出了一种基于区域对比的图像显著性检测方法。首先对图像进行超像素分割预处理,然后利用图像的颜色特征和空间特征算出区域对比度,再结合图像子区域与其邻域像素平均特征向量的距离以及中心优先原则得到图像高质量的显著图。仿真实验结果表明,与其他的显著性检测算法相比,可以更加有效地检测出显著性目标,更好地抑制背景。 相似文献
7.
局部二值模式(LBP)和韦伯局部描述算子(WLD)是两种图像的纹理描述算子,在图像的特征提取方面有较强的能力。为了更加准确地对人脸表情进行识别与分类,针对LBP在特征提取的过程中只考虑了中心像素点与周围的其他像素点的灰度值之差,WLD仅考虑中心像素点与周围像素点灰度值之间的激励强度与梯度方向关系的问题,提出一种新的特征提取算法—局部二值韦伯模式(LBWP)。首先对图像进行预处理,检验人脸和裁剪有效的表情区域,接着对图像进行LBWP特征提取,在特征提取之后采用SVM的分类器对表情进行识别和分类。该算法在CK+数据集和JAFFE数据集上进行实验仿真,识别率分别达到了97.14%和95.77%。实验结果验证了LBWP算法在表情识别方面的有效性,且丰富了人脸图像特征提取方法。 相似文献
8.
罗益荣 《计算机应用与软件》2014,(10)
检索算法是海量图像自动检索基础。鉴于单一特征无法准确描述图像内容,结合时域和频域纹理特征优点,提出一种特征融合和支持向量机反馈的图像检索算法。首先取图像的LBP直方图作为空域特征,并利用Brushlet变换提取子带能量特征作为频域特征;然后采用马氏距离相似度量进行图像初步检察;最后采用支持向量机反馈提高图像检索准确率。仿真结果表明,相对于单一特征检索算法,该图像检索算法提高了图像检索的平均准确率,可以更准确地查找到用户所需的图像。 相似文献
9.
《计算机应用与软件》2016,(9)
针对海量视觉数据处理中的图像显著性检测问题,提出一种基于多重特征信息的新型方法。该方法首先根据像素的CIE Lab颜色空间和空间位置信息选用k-means算法对图像像素聚类,在初始化中心时根据蜂窝原理使用正六边形进行选种。然后用全局对比和局部对比方法分析选取的多重图像特征,并计算得到八种特征图。最后对八种特征图融合得到初始显著性图,再用阈值法得到最终的显著性图。该方法通过改进k-means算法实现良好的图像聚类以进一步分析、处理图像特征,并依据对比度、关键区域聚焦等重要原理将图像底层特征和中层特征合理融合,兼顾全局对比和局部对比,处理问题全面而高效。实验结果表明,从主观和客观两方面进行整体评估,该方法都达到了优越的性能。 相似文献
10.
11.
为了解决在人脸识别过程中由于年龄的变化而使人脸识别率急剧下降的问题,可在识别过程中加入快速、准确的年龄估计。提出了一种基于局域二值模式LBP(Local Binary Pattern)与支持向量机SVM(Support Vector Machine)回归相结合的年龄估计方法。对于人脸图像首先采用基于局部纹理特征的LBP算子进行人脸纹理特征提取;然后用基于整体特征的PCA方法对提取出来的纹理特征向量进行降维;最后使用SVM回归进行训练得到全局年龄函数,建立纹理特征向量与年龄之间的对应关系。实验结果表明,这种方法可以快速有效地对人脸图像进行年龄估计。 相似文献
12.
提出了一种基于局部二元模式(Local Binary Pattern,LBP)与支持向量机(SVM)相结合的面部表情识别方法。使用LBP算子对图像进行处理,对图像的模式进行统计形成面部表情特征;使用线性判别分析对表情特征进行降维处理;采用支持向量机对面部表情进行分类。用Matlab实现了上述方法,并在日本女性人脸表情(JAFFE)数据库上测试,取得了70.95%的识别率。 相似文献
13.
针对Gabor小波与局部二值模式(Local Binary Pattern,LBP)在表情识别上的局限性,提出了一种多尺度中心误差补偿二值模式(Center Error Compensation Binary Pattern,CECBP)的表情识别方法。对预处理后的人脸表情图像创建多尺度的金字塔,用中心误差补偿二值模式对金字塔中的各层图像进行编码,分块提取各层编码后的直方图序列作为特征,用支持向量机(Support Vector Machine,SVM)进行分类。在JAFFE、Cohn-Kanade以及Pain Expression表情库上的交叉验证表明,该方法可以抑制噪声,具有较高的识别率和较快的识别速度,比传统的Gabor小波以及LBP更具有优势。 相似文献
14.
要:支持向量机(SVM)是一种新的模式识别方法,有较好的泛化能力和推广能力。研究了基于纹理提取和支持向量机的自动木材表面缺陷的识别问题,借助LBP纹理特征提取技术实现对木材图像数据降维处理,并研究了木材表面不同类型缺陷的分布规律。利用支持向量机分类算法对木材表面有无缺陷进行了快速准确的自动识别,实现了木材表面缺陷的自动定位。多次交叉实验表明,SVM分类算法对木材表面缺陷具有较好的识别能力,识别率可达96%以上。 相似文献
15.
16.
针对方向性局部二值模式(DLBP)在单尺度下获取图像纹理特征的不足,提出一种非对称方向性局部二值模式(AR-DLBP)多尺度多方向融合的表情识别算法。首先对人脸表情图像进行光照补偿预处理,消除光照、噪声的影响,分割出人脸及眉、眼、嘴局部表情关键区域,并计算出关键区域的贡献度(CM);然后提取人脸及关键区域的异或-非对称方向性局部二值模式(XOR-AR-DLBP)直方图特征信息,并根据CM对关键区域直方图信息进行加权级联再与整幅人脸图像的特征信息进行融合;最后用SVM分类器进行表情分类识别。该算法在JAFFE库、CK库上仿真实验,分别取得95.71%、97.99%的平均识别率及112?ms、135?ms的平均识别时间,实验结果表明,该算法可以有效精确地完成人脸表情的分类识别。通过对表情图像光照补偿预处理及分割出表情的关键区域,并加权融合局部与整体特征,大大提高了特征的鉴别能力,与传统算法的对比实验,也表明该算法无论是在识别率还是在识别时间上,所得效果都是最好的。 相似文献
17.
提出一种基于二维离散Haar小波变换的局部二值模式(LBP)与局部梯度模式(LGP)的特征融合方法。对图像进行二维离散Haar小波变换,得到4个不同频率的子图像,对低频部分子图像提取LBP特征,对3个高频部分子图像提取LGP特征,将3个LGP特征并接融合后与LBP特征串接融合进行行人检测。在Matlab环境下利用支持向量机(SVM)对INRIA数据集进行5组实验,分别将该方法与梯度方向直方图(HOG)、金字塔梯度方向直方图(PHOG)、LBP、LGP进行检测率、检测时间、光照鲁棒性以及噪声鲁棒性对比。综合各项实验数据表明,该方法在光照鲁棒性以及噪声鲁棒性方面都能取得更好的效果。 相似文献
18.
19.
20.
提出一种具有较强光照鲁棒性的人脸识别方法。通过Gamma校正、高斯差分(DoG)滤波和对比度均衡化算法对图像进行光照预处理,降低光照敏感度;利用局部二值模式(LBP)算子提取局部纹理特征,将图像划分为若干个不重叠的子区域,提取每个子区域LBP直方图,形成人脸图像特征,用主成分分析(PCA)进行降维处理;使用支持向量机(SVM)进行分类识别。在Yale-B数据库进行实验的结果表明,该算法的平均识别率可达99.68%,其性能优于目前该领域的典型算法。 相似文献