首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
低有机负荷含磷废水处理中污泥膨胀的控制对策   总被引:4,自引:0,他引:4  
通过实际的工程实践发现,低有机负荷含磷废水在生化处理过程中,经常发生的污泥膨胀类型有两种即丝状菌性膨胀和结合水性膨胀,这两种污泥膨胀的发生条件和影响因素各不相同,因此所采取的控制措施也不尽相同,在对污泥膨胀进行深入研究的基础上,得出了投氯杀菌,污泥絮凝,调节运行参数等几种较为有效的控制该类废水污泥膨胀的对策,为同类废水污泥膨胀的预防和控制提供参考。  相似文献   

2.
低pH值与低有机负荷引起的活性污泥膨胀及其恢复   总被引:13,自引:0,他引:13  
用SBR法处理啤酒废水和化工废水的试验研究表明:两种废水的活性污泥在低有机负荷时有利于丝状菌的增殖而会发生污泥膨胀,这种膨胀污泥可以通过提高有机负荷得到控制和恢复。啤酒废水在长期低pH值(4.06 ̄5.0)和有机负荷连续由高变低时引起的污泥膨胀,其SVI较相同有机负荷、正常pH值(6.5 ̄8.0)条件下上升缓慢,有出现丝状菌缠绕型粒状污泥。在高负荷及pH=6.0恢复时的粒状污泥消失过程中,SVI仍  相似文献   

3.
目的研究低pH值、低有机负荷引起的丝状菌活性污泥膨胀对MBR工艺运行效果的影响,控制污泥膨胀,为实际工程应用提供实验依据.方法试验以增加反应器内的碱度和污泥负荷来提供适应菌胶团生长的微生物环境为主,同时投加次氯酸钠杀菌剂和硫酸亚铁絮凝剂来辅助控制污泥膨胀.结果污泥膨胀期间,上清液CODcr平均去除率比未发生污泥膨胀时提高了6.31%;为保持恒定出水量,膜两侧压差在7 d内由10 kPa迅速增加到65 kPa.控制反应器内pH值7.2~8.0,BOD污泥负荷在0.292~0.323,调整十余天后,成功控制住了污泥膨胀.结论丝状菌比表面积大,在低底物浓度的条件下对基质的亲和能力比菌胶团强,污泥膨胀使膜污染急剧增加.创造有利于菌胶团生长的微生物环境可有效地恢复由丝状菌引起污泥膨胀.  相似文献   

4.
污泥有机负荷对TP去除的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
通过改变人工合成污水的浓度、流量和污泥浓度 ,探讨有机污泥负荷对无回流间隙曝气系统 ( Non-Backflow Intermittent Aeration System,缩写为 NBIAS)脱氮除磷和有机物去除效果的影响。试验表明 ,在通过改变进水流量或浓度而引起污泥负荷变化的条件下 ,当进水 CODcr为 3 0 0~ 40 0 mg/ L,流量为 0 .5 L/ h,污泥浓度为 2 .0 g/ L(对应污泥负荷为 0 .3 g CODcr/ ( g MLSS· d) )左右时 ,系统去除有机物、氮、磷总体效果最佳  相似文献   

5.
为了研究低溶解氧微膨胀前后污泥硝化活性的变化,采用SBR反应器,平均DO浓度为0.6mg/L-0.9mg/L,测定污泥微膨胀前后污泥氧消耗速率曲线。结果表明:发生污泥微膨胀后,活性污泥对COD的去除能力有较大的提高,而对氨氮去除能力却有一定的下降。污泥微膨胀前后的氧消耗速率曲线显示,微膨胀前活性污泥总活性为67.72mgO2/gVSS·h,其中硝化活性为43.12mgO2/gVSS·h,占其总活性的63.67%;而微膨胀后活性污泥总活性为90.49mgO2/gVSS·h,其中硝化活性为23.98mgO2/gVSS·h,占其总活性的26.51%。低DO成为微生物生长的限制性基质,污泥微膨胀的状态下,活性污泥中丝状菌成为优势菌种,而硝化细菌成为非优势菌种,污泥的总硝化活性降低。  相似文献   

6.
化工污水处理场污泥膨胀与上浮的原因及其控制   总被引:4,自引:0,他引:4  
通过对大庆石化总厂化工污水处理场运行情况的考察与分析,寻找造成该处理场污泥膨胀与上浮的原因。分析结果表明:曝气池中溶解氧(DO)缺乏引起了污泥膨胀的发生,废水中营养物(N,P)并不是引起该处理场污泥膨胀主要原因,进水pH值与有毒物质的冲击和低DO浓度导致了污泥上浮。在此基础上提出了初步解决措施,运行结果表明是可行的。  相似文献   

7.
丝状菌污泥膨胀的工艺控制策略   总被引:1,自引:0,他引:1  
针对药剂法抑制丝状菌污泥膨胀成本高且停止投加后容易复发,通过调节工艺参数,考察了工艺法抑制丝状菌污泥膨胀的可行性.试验采用SBR反应器,系统地研究了有机负荷、溶解氧和进水方式等常见运行参数对丝状菌污泥膨胀的抑制效果.结果表明,增加有机负荷(>0.40 kgCOD/(kgMLSS.d))难以抑制丝状菌污泥膨胀,且好氧时间和曝气量设置不当还容易引发黏性膨胀;单独提高ρDO(4~6 mg/L)对抑制丝状菌膨胀效果并不明显,并且过度曝气还会对除磷产生负面影响;脉冲进水方式虽然可以强化贮存选择作用,但是对丝状菌膨胀抑制并无明显效果;增设前置缺(厌)氧段是抑制丝状菌污泥膨胀的有效手段.  相似文献   

8.
低温条件下低溶解氧污泥微膨胀的发生及分子生态学解析   总被引:2,自引:0,他引:2  
采用SBR工艺处理实际生活污水,在低温条件下,通过降低溶解氧诱使活性污泥发生微膨胀,使污泥容积指数(SVI)维持在150~200 mL/g.研究了低温条件下活性污泥微膨胀的发生及活性污泥中微生物的生长,通过FISH技术对微膨胀状态下的优势丝状菌进行定性分析,确定低温下诱发低氧微膨胀的丝状菌是微丝菌(MPA223).与正常溶解氧时相比,微膨胀状态下COD和PO43-P-的去除率均上升,分别为80%和98%;NH4+-N和TN的去除率有所下降,分别为52%和28%;研究中还发现,低溶解氧导致了同步硝化反硝化(SND)现象的发生,约有15%的氮通过SND现象去除.  相似文献   

9.
膜生物反应器(Membrane Bio-Reactor, MBR)的膜污染限制了MBR工艺的发展。为了能更好地了解污泥膨胀对膜污染发生过程的影响机理,运行了膨胀污泥系统的一体式MBR,通过分析污泥胞外聚合物EPS(Extracellular Polymeric Substances, EPS)、跨膜压差TMP(Transmembrane pressure, TMP)、膨胀污泥沉降性能等,总结膨胀污泥对MBR膜污染的影响。结果表明:膨胀污泥的EPS中蛋白质和多糖含量偏高;膨胀污泥松散絮状结构难以沉淀,沉降性能差,易于形成泥饼层,Rc是导致膜组件污染的主要因素。  相似文献   

10.
采用序批式活性污泥(sequencing batch reactor, SBR)工艺处理低碳氮比实际生活污水, 研究了低溶解氧丝状菌污泥膨胀的成因及不同运行模式对低溶解氧污泥膨胀控制效果.试验结果表明, 缺氧/好氧(anoxic/oxic, A/O)工艺当溶解氧(dissolved oxygen, DO)的质量浓度ρ(DO) 控制在0.5 mg/L时, 发生以H.hydrossis为优势菌的丝状菌污泥膨胀.当采用SBR工艺A/O运行模式, 改变有机负荷(F/M)为0.83 kg/(kg·d), ρ(DO)控制在2.0 mg/L左右时, 污泥膨胀并不能有效控制, 污泥体积指数 (sludge volume index, SVI) 一直保持在300 mL/g以上.经荧光原位杂交(fluorescence in situ hybridization, FISH)方法鉴定, 优势菌种依然为H.hydrossis丝状菌, 在此阶段系统总氮(total nitrogen, TN) 平均去除率为31.17%, COD平均去除率为65.04%.当采用全程好氧运行模式, 改变F/M为0.37 kg/(kg·d) , ρ(DO) 控制在2.0 mg/L左右时, 能有效控制污泥膨胀, SVI下降到150 mL/g以下.在此阶段, NH4+-N去除率接近100%, 出水ρ(NH4+-N)几乎为0, TN和COD的平均去除率分别上升为70.7%和73.9%.此阶段出水ρ(TN)和ρ(COD)平均值分别为18.4和46.9 mg/L, 接近国家一级A排放标准.  相似文献   

11.
利用一体式膜生物实验反应器,通过静态和动态实验,并结合考察化学需氧量(COD)和氨氮(NH4+-N)等参数,先后研究了在不同pH值条件下,硫酸铝、氯化铁和改性淀粉混凝剂及助凝剂PAM等物质对污泥膨胀的控制效果.结果表明,在静态条件下,氯化铁对污泥膨胀的控制效果最好,氯化铁的质量浓度达到120 mg·L^-1之后,活性污泥的沉降比SV(Settling Velocity)可以稳定在91%左右。动态实验表明,投加混合药剂使出水中NH4+-N的质量浓度可由平均11.09 mg·L^-1下降至1.77 mg·L^-1,出水中COD由平均18.14 mg·L^-1下降至14.4 mg·L^-1.研究表明,通过添加混凝剂可以控制污泥膨胀的发生,并可以提高污水处理效率.  相似文献   

12.
SBR工艺处理含盐有机废水的试验研究   总被引:1,自引:0,他引:1  
采用SBR工艺分别研究了不同盐度、不同有机负荷驯化下的活性污泥的生物相、污泥的沉降性能、COD去除率和出水浊度,结果表明,SBR工艺处理含盐有机废水有机负荷在0.15 kgCODCr/kg MLSS.d,盐度在25 g/L NaCl下运行,CODCr的去除率达到86%,而在高负荷和高盐度环境下容易诱发污泥膨胀.  相似文献   

13.
低温条件下MUCT工艺污泥膨胀的产生与控制   总被引:2,自引:0,他引:2  
为进一步探讨丝状菌污泥膨胀的影响因素和建立控制策略,以MUCT工艺为研究对象,考察低温对活性污泥沉降性能的影响及相应的污泥膨胀的控制措施.结果表明:当系统的反应温度低于15℃时,Microthrixparvicella大量生长繁殖,改变了活性污泥的结构,发生污泥膨胀,SVI值最高达到381 mL/g;通过采取控制系统的反应温度为25±1℃、污泥龄减少至6 d、硝化液回流比α减小为2.5以及混合液回流比γ增大为1等措施可有效抑制Microthrixparvicella的生长繁殖,提高污泥的沉降性能,经过36 d的运行,使SVI值降至127 mL/g;膨胀期与恢复期系统对COD、TP的去除效果较好,而且膨胀期对TN的去除效果也较好,但在恢复期则因污泥龄的降低而明显下降.  相似文献   

14.
SBR工艺处理造纸废水的试验研究   总被引:1,自引:0,他引:1  
考察了SBR工艺处理造纸废水的效果,以及pH值、曝气时间、进水浓度对COD去除率的影响。试验结果表明,pH值为6.5~7.5,曝气时间为6h,进水浓度为949mg/L时,COD去除率可达到81.8%,出水水质达到国家规定的造纸行业废水排放标准。  相似文献   

15.
有机中间体废水加压活性污泥法处理及动力学研究   总被引:1,自引:0,他引:1  
用加压活性污泥法处理有机中间体废水,考查了停留时间、污泥浓度、反应压力及曝气量等条件对化学需氧量(COD)去除率的影响,并对生物降解动力学进行了研究.有机中间体废水经铁炭床微电解预处理后,CODCr从原水的8000mg/L降到4000~5000mg/L,B/C由原来的0.20升高到0.40左右.通过实验确定了加压活性污泥法处理有机中间体废水的较优工艺条件为:反应器内废水CODCr在18002100mg/L,反应压力0.1MPa,污泥浓度4.0~6.0g/L,停留时间8~10h,曝气量2.0L/min.此条件下COD去除率大于70%,出水CODCr小于600mg/L.生物降解动力学符合Monod模式,动力学参数:Vmax24.49d^-1,Ks1927.69mg/L.  相似文献   

16.
本实验采用膜生物反应器处理造纸废水,通过控制曝气池中的污泥浓度(MLSS),得出MLSS和CODcr去除率的关系。在和普通活性污泥法及生物接触氧化法进行比较的基础上,从生物学的角度分析膜生物反应器处理难降解有机废水的处理。  相似文献   

17.
为了解决污水厂频繁发生的污泥膨胀问题,提出一种能在低氧条件下利用丝状菌的形态和生理特性进行污水处理的节能高效的"低氧丝状菌微膨胀"新方法.采用SBR反应器,通过好氧-缺氧的运行方式,研究了在微膨胀状态下,DO含量和有机负荷率对污泥沉降性的影响及氮、磷和COD的去除特性.试验结果表明:有机负荷率和DO含量各自在特定的范围内影响污泥沉降性,当有机负荷率大于0.25d-1时,单靠降低DO含量已经不能维持污泥微膨胀状态.低氧微膨胀不会恶化系统的硝化效果,由氮的物料平衡发现,每周期通过同步硝化反硝化可以去除掉20%的氮.低氧曝气前期能够出现释磷现象,系统内可以富集聚磷菌.  相似文献   

18.
以连续流搅拌槽式反应器作为发酵生物制氢反应装置,针对有机负荷(OLR)对厌氧活性污泥发酵生物制氢系统运行的影响进行实验研究.在水力停留时间(HRT)8 h,(35±1)℃,进水COD质量浓度6000 mg/L,即OLR为18 kg/(m3.d)的条件下运行,厌氧活性污泥发酵产氢系统达到稳定时的平均产氢量为10.96 L/d,比OLR 12 kg/(m3.d)条件下提高了19.3%,比OLR 6 kg/(m3.d)条件下提高了52.3%.当进水COD质量浓度达到8000 mg/L,即OLR为24 kg/(m3.d)时,pH、ALK分别从大于4.1和250 mg/L的水平,迅速下降到3.7和5 mg/L以下,而ORP则从-350 mV急速上升到-210 mV以上.表明厌氧活性污泥微生物已无法承受有机负荷提高造成的环境变化,其活性受到严重抑制,反应器产氢能力急剧下降,系统的产酸发酵类型也发生了根本改变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号