首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《塑料》2015,(1)
提出1种聚合物表面微结构平板热压印连续成型方法,该方法是将聚合物基片从挤出机挤出后,通过两辊对基片进行初步压平定型,再利用表面快速加热装置对聚合物表面进行快速加热,使聚合物表面温度迅速高于其熔融温度使其熔融,然后进入联动式平板热压印,设备压印制备出具有表面微结构聚合物片材。该方法的主要特点是将聚合物挤出成型设备和微结构平板热压印设备实现联动,一步法实现平板热压印聚合物表面微结构的连续成型。  相似文献   

2.
《塑料》2018,(5)
通过模具上下模板差温的方法,以聚碳酸酯(PC)片材为基板,在热压印过程中制备了聚合物微针,研究了制备过程中,模具上下模板温度、热压印压强、热压印时间等工艺参数对微针平均长度和微结构复制率的影响。结果表明:模具上模板的合理温度(80℃左右)有助于减少压印时间和降温时间;下模板温度对微结构成型具有决定性的作用,只有在下模板温度大于154℃的条件下,才能压印出符合要求的聚合物微针;热压印压强在8~12 MPa的范围内与微针成型效果的关系呈正相关;随着压印时间的增加,微针的平均长度变长,通过控制合理的时间,微针的平均长度基本上能够达到模具上微针的长度,复制率大于95%。  相似文献   

3.
采用熔融共混法制备了马来酸酐(MA)封端聚碳酸亚丙酯(PPC)和聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)的共混物(PPC-MA/PETG),采用套管上吹法将共混物吹塑成膜.通过差示扫描量热仪(DSC)、热失重分析(TGA)及扫描电子显微镜(SEM)等手段系统地研究了共混物的热、力学性能及形貌.结果表明:PPC-MA/PETG共混物为部分相容体系;MA封端PPC可以提高PPC的热分解温度(T-5%),PETG与PPC-MA共混进一步提高了PPC的热性能;当PETG含量低时,PETG作为岛相分散在PPC基体中,随着含量的增加,共混物将发生"海-岛"结构转变成"海-海"结构;共混物薄膜的力学性能较纯PPC大幅增强,从4.7MPa提高到16.93MPa.PPC-MA与PETG共混可以获得力学性能较好的膜材料,改善PPC材料的缺陷,在包装、生物医用材料等领域具有广阔的应用前景.  相似文献   

4.
将逐步给出用于热成型和吹塑模拟的薄膜大变形有限元法。由于无论是热成型还是吹塑过程,成型制件是薄壁结构,聚合物将被模拟成膜,只考虑聚合物的拉伸,而忽略聚合物的抗弯性,有限元分析涉及到大应变、非线性材料行为以及接触问题等,在分析过程中,碰撞计算将连续进行以确定接触是否发生。当接触发生后,塑料膜上的接触点将永久固定在模具表面而不允许再移动。  相似文献   

5.
《塑料》2018,(5)
传统的给药方式有经皮给药和透皮给药2种方式。而微针经皮给药可以有效地将2种给药技术相结合。微针作为一种新型医疗技术,既结合了传统给药方式的优点,又克服了其劣势,未来的应用会越来越广泛。而微针尺寸小,属于微米尺度制品,其成型和大批量生产主要依赖于微成型模具。文章设计了一种微成型热压模具,模具主要由压模成型零件、控温系统、定位导向系统3部分组成,设计的成型零件结构将裁剪与热压2种功能统一,倒T型结构将聚合物片自动顶出型腔,为实现聚合物微针低成本、大批量生产提供了解决方案。基于PC聚合物成功制备微针的实验,证明了聚合物微针模具设计方案、模具整体结构、模具设计及模具材料的选择都是合理的。  相似文献   

6.
采用熔融共混工艺制备了聚碳酸酯(PC)/聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)共混物,测试了PC/PETG共混物的熔融指数,研究了共混物的复数黏度与剪切频率、温度以及物料组成的关系。结果表明,PETG的引入改善了PC的成型加工流变性能;PC/PETG共混物呈现出假塑性流体特性,表现出切力变稀的现象;共混物随着温度的升高,复数黏度下降,随着PETG含量的增加,共混物黏度呈现下降的趋势。  相似文献   

7.
类固态等温热压印是一种模具保持恒温的压印工艺,对于无定型聚合物而言,温度应保持在Tg附近的类固态温度范围内。对聚甲基丙烯酸甲酯(PMMA)在类固态条件下的压印过程进行了有限元模拟分析,着重探讨了填充规律和成型形貌。模拟结果显示,PMMA在填充过程中的形貌稳定,不会出现传统工艺中的"双峰"缺陷。微结构深度是影响填充难度的主要几何因素,深度越大,结构的成型难度越高。深宽比、尺寸和形状对结构也有不同程度的影响,但作用均小于深度。在温度受限的情况下,聚合物的流动性受到制约,无法以熔体形态的均匀速率充满模腔,增加了模具结构的几何参数对制品成型质量的影响。  相似文献   

8.
将逐步给出用于热成型和吹塑模拟的薄膜大变形有限元法。由于无论是热成型还是吹塑过程 ,成型制件是薄壁结构 ,聚合物将被模拟成膜 ,只考虑聚合物的拉伸 ,而忽略聚合物的抗弯性 ,有限元分析涉及到大应变、非线性材料行为以及接触问题等 ,在分析过程中 ,碰撞计算将连续进行以确定接触是否发生。当接触发生后 ,塑料膜上的接触点将永久固定在模具表面而不允许再移动。  相似文献   

9.
聚合物挤出热压印成型工艺   总被引:1,自引:0,他引:1  
刘文龙  吴大鸣  刘颖 《塑料》2012,41(2):28-30,77
介绍一种新的连续热压印工艺,此工艺中热压印机与聚合物片材挤出机串联使用,聚合物片材经挤出机挤出以后先要对其进行压平和调厚,以保证待压印片材的厚度及其均匀性,然后再进行热压印步骤。分析了热压印中影响压印制品质量的关键因素以指导热压印机的设计。应用此工艺结合所设计的压印机成功制备出了聚合物微透镜扩散板,并对制备出的扩散板的光学性能进行了模拟和测试。此工艺流程具有设备简单、图形复制精度高、效率高、成本低等优点,非常适合大面积微结构的制备。  相似文献   

10.
采用热重分析法研究了在氮气氛围中不同用量1,4-环己烷二甲醇(CHDM)改性共聚酯(PETG)在不同升温速率下的热稳定性,利用Flynn-Wall-Ozawa方法、Friedman方法研究了PETG共聚酯的热降解动力学.结果表明:在相同的升温速率下,随着CHDM用量的提高,PETG共聚酯在较低的温度下开始降解,且降解加...  相似文献   

11.
应用裂解-气相色谱-质谱(PY-GC-MS)联用技术研究了新型的无定形共聚酯PETG的热分解性能。结果表明:不同裂解温度下,产物组成差别很大。600℃裂解时,在总离子流图(TIC)上各特征裂解产物的存在最为明显,可以为PETG共聚酯的结构鉴定提供丰富的结构信息。通过热裂解,使PETG产生特征产物、相应的缩合物和环化产物等裂解产物,并经色谱分离、质谱鉴定,可准确判断PETG共聚酯的结构组成。另外根据热分解产物的组成和温度依赖性,讨论了PETG共聚酯的热分解机理。  相似文献   

12.
Rheological and electrical properties were studied on blends of a PETG polyester (cyclohexanedimethanol-modified polyethylene terephthalate) and an inherently static dissipative high molecular weight polyether based copolymer, hereafter referred to as ESD polymer. Several important electrical properties and flow phenomena have been observed. First of all, the PETG blends could result in ESD protected material with excellent performance and a minimal effect on physical properties and melt processability. The rheological characterization reveals that the ESD polymer has a high melt viscosity even at a temperature more than 150 degrees above its melting temperature and that it exhibits pseudoplastic behavior. The PETG melt shows a near constant dynamic viscosity at a low frequency region. The viscosity of the ESD polymer and PETG melt exhibits a cross over at the temperature range from 200–220°C; the PETG melt is the lower viscosity component at low shear rate and the ESD polymer is the lower viscosity component at high shear rate. This appears to result in the existence of a small composition difference in the thickness direction of an injection-molded ESD polymer/PETG part, with a greater fraction of the ESD polymer component in the skin section. This, in turn, could enhance the surface conductivity of the skin region of an injection-molded part. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
In conventional hot embossing, a thermoplastic polymer undergoes phase transitions in liquid, semi‐solid, and solid states through cyclic heating and cooling. This paper, in contrast, describes the development of a constant‐temperature embossing process and compares its characteristics against standard hot embossing. The new process utilizes the crystallizing nature of supercooled polymer films to obtain the necessary phase transitions. By softening and crystallizing the supercooled polymer at the same temperature, the embossing and solidification stages can be carried out isothermally without a cooling step. PET, due to its relatively slow crystallizing kinetics, was chosen as a model material for this study. The embossed films with microgroove patterns of different sizes and aspect ratios were characterized for their replication fidelity and accuracy. For supercooled PET films, constant‐temperature embossing with high replication quality and acceptable demolding characteristics was achieved in a large processing temperature window between Tg and Tm of PET. A parametric process study involving changes of the embossing temperature and embossing time was conducted, and the results indicated that the optimal process parameters for constant‐temperature embossing can be derived from the crystallization kinetics of the polymer. The removal of thermal cycling is a major advantage of constant‐temperature embossing over conventional hot embossing and represents an important process characteristic desired in industrial production. POLYM. ENG. SCI., 54:1100–1112, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
Low filling efficiency and large thermal stress are two important problems that limit the wide use of hot embossing especially in fabricating high aspect ratio patterns. Two types of flow barriers, the first being an accessorial slot on the mold (SFB), the other was a block on the hot embossing machine (BFB), were designed to enhance polymer filling and their performances were simulated with the finite element method. The numerical simulation results show that two kinds of flow barriers can also accelerate the polymer filling speed and improve filling efficiency. The BFB has a better promoting effect and can be easily used as a quasi close‐die embossing process. The shrinkage of the polymer and mold is made uniform with a designed polymer grip holder to minimize the thermal stress. The polymer was clipped at a temperature in a cooling step and its deformation was fixed; thus, the shrinkage of the polymer can be equal to the mold at a special temperature. An improved hot embossing machine was designed and the hot embossing process was modified to satisfy these requirements. At last successful fabrication of the light guide plate verified the improvements. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

15.
The standard embossing process is limited to the fabrication of surface structures on relatively large polymer substrates. To overcome this limitation, a hybrid punching and embossing process was investigated for through‐thickness embossing of three‐dimensional parts. The embossing tool included a punching head and to‐be‐ replicated features in the socket behind the punching head. The built‐in punching head facilitated a through‐thickness action and provided a closed‐die environment for embossing pressure buildup. The method was used to emboss multichannel millimeter waveguides which requires uniform edges and accurate dimensions. With a tool temperature of 140°C, an embossing time of 3 min and a total cycle time of 7 min, discrete 4‐channel waveguides were successfully embossed from a room‐temperature ABS substrate. A computer model was established to study the flow behavior during through‐thickness embossing. It was found that nonisothermal embossing conditions help confine the polymer in the cavity and reduce the outflow into the surrounding region, thus achieving complete fill of the cavity. POLYM. ENG. SCI., 47:2075–2084, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
The dynamic shear viscosity and the transient extensional viscosity of polycarbonate (PC), polymethyl methacrylate (PMMA), and polyvinyl butyral (PVB) were measured at temperatures near and far above their glass transition temperatures. The temperature sensitivity of rheological properties was used to explain the displacement curves during embossing. Numerical simulation of the embossing process was also carried out to compare with the observed polymer flow patterns. It was found that the simulated flow pattern during isothermal embossing agrees fairly well with the experimental observation. The deviation between the simulated and experimental results at the late stage of embossing may be due to air entrapment between the mold feature and the polymer substrate. For non‐isothermal embossing, the observed flow pattern can also be reasonably simulated, i.e. the polymer flows upward along the wall of the heated mold feature, and then compresses downward and squeezes outward. Temperature sensitivity of the dynamic shear viscosity and the transient extensional viscosity is similar for all three polymers. This correlates well with the initial displacement curves in isothermal embossing. Over a longer time, the strain hardening effect of the transient extensional viscosity seems to play a major role in the displacement curves.  相似文献   

17.
建立了聚甲基丙烯酸甲酯(PMMA)的黏弹性材料模型,利用有限元仿真软件Abaqus,以填充率为质量评价标准,对微流控芯片热压印的填充过程进行仿真。研究在等温条件(模具与芯片温度相同)下时间、温度和压力对微流控芯片沟槽填充效果的影响。仿真结果表明,压印温度和压印力对PMMA聚合物填充效果的影响较大,提高温度和压力都能达到加快聚合物填充速率和提高复制率的作用;时间参数的影响主要体现为增大PMMA的应力松弛现象,延长压印时间同样能达到提高复制率的作用。  相似文献   

18.
In this work, novel immiscible polymer blends with remarkable self-healing properties were developed. The blends are based on poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG), a nonself-healing polymer, and the ionomer sodium-neutralized poly(ethylene-co-methacrylic acid) (EMAA), with self-healing abilities. The ratios of (PETG)/ (EMAA) was varied from 0 to 100% (w/w) and mixtures were prepared using a twin-screw melt extrusion. The blend studied compositions were characterized by scanning electron microscope, differential scanning calorimetry, dynamic mechanical analysis and self-repair tests. The results revealed that blends samples were able to self-repair damages created by Vickers microhardness indentations. The self-repair is presented through video records where the establishment of scars in the damaged area can be observed. For the composition 50/50 (w/w), the whole repair was observed due the synergic effect between polymer chain mobility, new chemical interactions promoted between PETG and EMAA, thus improving its self-healing ability.  相似文献   

19.
An embossing strategy involving a hot station and a cold station for sequentially heating and cooling the embossing tool was investigated to reduce cycle times in hot embossing polymer microstructures. Experimental studies showed that aluminum stamps with a thickness of 1.4 mm can be rapidly heated from room temperature to 200°C in 3 s using contact heating against a hot station at 250°C. Microchannels and microlenses were successfully embossed onto high‐density polyethylene and acrylonitrile–butadiene–styrene substrates using a heating time less than 3 s and a total cycle time around 10 s. The two‐station embossing process for the microlens was also numerically studied. The simulated filling behavior agreed with the experimental observation and the predicted thermal and deformation history of the polymer offered a good explanation on the experimentally observed process characteristics. POLYM. ENG. SCI., 47:530–539, 2007. © 2007 Society of Plastics Engineers.  相似文献   

20.
Film embossing is a mechanical process in which a flat film is transformed into an embossed product. During the process, thermal and stress fields are applied Lo the polymer, causing changes in the microstructure and physical dimensions of the material. The engineering analysis of the process requires the study of various aspects relating to the characterization of the microstructure before and after embossing, A variety of techniques were employed to characterize the properties and microstructure of the embossed film in relation to: crystallinity, orientation, mechanical properties, and dimensions of the embossed films. The thermal treatment of the polymer film was shown to be the most significant factor in the process. By controlling the thermal treatment of the film, it is possible to manipulate the properties and dimensions of the embossed film. The important aspects: influencing thermal treatment include the radiation heater temperature, preheat roll temperature, line velocity, and film thickness. The initial film orientation and embossing pressure have a minor effect on the final properties of the embossed film. The main effect of the embossing pressure is on the bulk thickness of the embossed film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号