首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new laser-based method for real-time in situ measurement of thermophysical properties of materials has been developed. It entails production by a high-power laser pulse of a plasma plume from the surface of a condensed-phase specimen and simultaneous measurement of a material's response to the excitation. The specimen may be a solid or in a molten state at high temperatures. It has been shown that the thermal diffusivity can be determined, for instance, from the mass loss due to laser excitation. In one implementation the mass loss is determined from the impulse imparted on the surface by the ablated matter which is measured by an impulse transducer. In this paper, we present a new spectroscopic method for measurement of the mass loss, facilitating in situ non-contact measurement of the thermal diffusivity for the first time. An implementation of this method is described, whereby the thermal diffusivity of a complex layered surface is determined as a function of depth with resolutions as small as 13 nm.  相似文献   

2.
We have shown that a laser-produced plasma plume which is representative in elemental composition of the condensed phase target can be reproducibly generated if the movement of the surface due to evaporation is kept in pace with the thermal diffusion front propagating into the bulk. The resulting mass loss is then strongly controlled by the thermal diffusivity of the target matter, and this relationship has been exploited to measure the thermal diffusivity of metallic alloys. We have developed a novel RF Ievitator-heater as a contamination-free molten metal source to be used as a target for LPP plume generation. In order to determine the mass loss due to LPP excitation, a new high-sensitivity transducer has been constructed for measurement of the resulting impulse imparted on the specimen. The impulse transducer is built onto the specimen holder within the levitation-assisted molten metal source. The LPP method has been fully exercised for measurement of the thermal diffusivity of a molten specimen relative to the value for its room temperature solid. The results for SS304 and SS316 are presented, together with a critique of the results. A numerical modeling of the specimen heating in the molten metal source and the physical basis of the new method are also presented.Paper presented at the Fourth International Workshop on Subsecond Thermophysics, June 27–29, 1995, Köln, Germany.  相似文献   

3.
Excitation by a high-power laser pulse of a material surface generates a sequence of plasma, fluid flow, and acoustic events. These are well separated in time, and their detection and analysis can lead to determination of material properties of the condensed phase target. We have developed a new methodology for real-time determination of molten metal composition by time-resolved spectroscopy of laser-produced plasmas (LPP). If the laser pulse is shaped in such a way that the movement of the bulk surface due to evaporation is kept in pace with the thermal diffusion front advancing into the interior of the target, the LPP plume becomes representative of the bulk in elemental composition. In addition, the mass loss due to LPP ablation is very well correlated with the thermal diffusivity of the target matter. For several elemental solid specimens, we show that the product of the ablation thickness and heat of formation is proportional to the thermal diffusivity per unit molecular weight. Such measurements can be extended to molten metal specimens if the mass loss by ablation, density, heat of formation, and molecular weight can be determined simultaneously. The results from the solid specimen study and the progress with a levitation-assisted molten metal experiment are presented.Paper presented at the Third Workshop on Subsecond Thermophysics, September 17–18, 1992, Graz, Austria.  相似文献   

4.
Evaluation of the radiative and conductive heat loss from a molten metal sample to the cell has been made in order to obtain accurate thermal diffusivities of molten metals at high temperature with a laser flash method. The results suggest that thermal diffusivity values of molten nickel can be determined in the temperature range from 1728 to 1928 K with an uncertainty of ±3% in comparison with case considering only the effect of radiative heat loss. The usefulness of a cell for a laser flash method has been confirmed by applying simulated results to evaluate the heat leakage in the thermal diffusivity measurement of molten metals.  相似文献   

5.
An outline of the stepwise heating method for measuring thermal diffusivity and specific heat capacity of samples in both solid and liquid phases is described. The method is based on the measurement of temperature response at the surface of a solid sample when the other surface is heated in step-function. By making the best use of the characteristic points of this method, applications to samples in the liquid state, especially to high temperature melts such as molten salts, have been tried. As examples of measurement results, the thermal diffusivity, specific heat capacity, and thermal conductivity of zirconia brick and the thermal diffusivity of molten salts are shown in graphic form.Presented at the Japan-United States Joint Seminar on Thermophysical Properties, October 24–26, 1983, Tokyo, Japan.  相似文献   

6.
We report measurement of thermal diffusivity of solid samples by using a continuous heat source and infrared thermal imaging. In this technique, a continuous heat source is used for heating the front surface of solid specimen and a thermal camera for detecting the time dependent temperature variations at the rear surface. The advantage of this technique is that it does not require an expensive thermal camera with high acquisition rate or transient heat sources like laser or flash lamp. The time dependent heat equation is solved analytically for the given experimental boundary conditions. The incorporation of heat loss correction in the solution of heat equation provides the values of thermal diffusivity for aluminum, copper and brass, in good agreement with the literature values.  相似文献   

7.
针对传统热扩散率测量方法对热激励、边界和试样尺寸有严格要求等苛刻条件,提出一种适用于薄片材料的热扩散率测量新方法。该方法采用热成像技术采集受激光激励引起的材料表面温度场变化数据,将其通过曲线拟合对导热微分方程中的微分项进行估测,求取微分方程解析解转化为对代数方程求解以确定热扩散率值,因而无需严格控制边界条件、初始条件和热激励。通过仿真分析验证了理论模型的合理性,并对H62黄铜和304不锈钢材料进行了实测,对比文献参考值表明测量偏差均在6.0%以内,测量重复性为4.3%,可满足快速无损的测量要求。  相似文献   

8.
The transport properties of condensed phase materials are, in principle, dependent on the local structure and composition of the specimen. This is particularly evident near the free surface of a solid alloy specimen where the morphology, composition, and thermal diffusivity exhibit significant depth dependence, as demonstrated in an earlier study of the depth-resolved thermal diffusivity of a galvanized steel specimen. A new non-contact method was used, based on time-resolved, spectroscopic measurement of the total mass removed from the specimen surface representatively in elemental composition by a high-power laser pulse. A new study of a titanium thin film of varying thickness deposited on a copper substrate is presented. The titanium thin film is first fabricated in a vacuum and then immediately analyzed for composition and thermophysical properties in situ, both by the method of representative laser-produced plasmas (LPP). Successive ablation layers of the thin film, as exposed by LPP ablation, have revealed the dependence of the thermophysical properties on film thickness as well as on depth. The existence of a characteristic length over which the substrate influences the dynamics of thermal transport in the titanium thin film has also been observed.  相似文献   

9.
A new all-spectroscopic method for depth-resolved thermal diffusivity measurement of metallic specimens has been demonstrated. The method entails measurement of the mass entrained into a laser-produced plasma (LPP) plume in such a manner that the plume is representative of the specimen in elemental composition. Both the abundance of matter and its elemental composition are measured by time-resolved spectroscopy for each LPP plume. In order to delineate the morphology versus composition basis of the depth dependence, a new study on a Nichrome ribbon specimen heated by ohmic heating in a vacuum is presented. A set of depth-resolved thermal diffusivity measurements is carried out, while noting the attendant changes in the spectral emissivity and elemental composition at succeeding ablation layers. Additional measurements are carried out after the specimen has been treated under varying heating conditions. Preferential diffusion of chromium at high temperatures has been found to contribute to the dynamics of surface thermophysical properties at high temperatures. Representative LPP ablation is well suited for removal of surface impurities prior to thermophysical property measurements by the pulse heating technique.  相似文献   

10.
Determination of the thermophysical properties of thin film materials is important for modeling and optimizing laser microvia drilling of organic substrates in microelectronics applications. Techniques to measure the density, thermal conductivity, thermal diffusivity, thermal decomposition point, and specific ablation heat of thin polymer films are described. An experimental apparatus was set up for laser heating of the sample. To measure the thermal diffusivity, an analytic heat transfer model is developed. One-dimensional heat conduction is assumed due to the small thickness of the film compared to the radius of the laser beam. The value of thermal diffusivity is obtained by fitting the experimental data to the theory. The specific ablation heat is obtained by measuring the mass loss during laser ablation. The experimental apparatus and the property determination methodology can also be applied to thin samples of other materials.  相似文献   

11.
Optical measurements of thermal diffusivity of a material   总被引:2,自引:0,他引:2  
The measurement of thermal diffusivity of a material (in particular, a thin film) is important for various reasons, e.g., to predict the heat transfer in the solid subjected to a thermal process, to monitor surface composition or morphology, or to detect invisible subsurface defects like delaminations. This measurement can be done in a noncontact manner using various photothermal methods. Such methods typically involve pulsed heating of the surface by small amounts using a laser source; the decay of the surface temperature after this pulsed photothermal heating is then probed to provide the thermal diffusivity. Various probing methods have been developed in the literature, including the probing of reflection, refraction, and diffraction from the pulsed heated area, infrared thermal radiometry, and surface deformation. This paper provides an overview of such techniques and some examples of their applications.  相似文献   

12.
Photothermal generation of thermal waves was used in combination with the probe beam deflection technique to study the thermal diffusivity of functionally graded materials (FGMs) quantitatively. An amplitude modulated Ar ion laser was used as a heat source and the HeNe probe laser was reflected from the specimen surface at almost normal incidence. It is demonstrated that this measuring technique can be used for a precise determination of the thermal diffusivity for a wide variety of materials if appropriate measuring conditions are chosen. The precision of the thermal diffusivity measurement was better than 5% for all materials studied. The achieved spatial resolution of the thermal diffusivity measurement was about 100 m, but higher spatial resolutions can be achieved if necessary. In a graded Al2O3/Al composite local fluctuations of the thermal diffusivity were observed due to the coarseness of the microstructure, but the overall behaviour of the thermal conductivity could be described well by the Maxwell-Eucken relationship. In a functionally graded AlCu alloy, a smooth thermal diffusivity profile was observed in the region where the alloy consisted of a solid solution of Cu in Al.  相似文献   

13.
The experimental determination of thermophysical properties has been greatly improved by the introduction of laser technology. The laser beam is used for sensing and also for heating (or exciting) the specimen. The advantage of using a laser beam is most strongly felt in the measurement of the thermal conductivity or the thermal diffusivity, which are some of the most difficult properties to measure. Interesting features of new techniques for investigating various aspects of thermal conductivity in fluids and solids are reviewed. An optical method, the so-called forced Rayleigh scattering method, or the laser-induced optical-grating method, has been developed and used extensively by the present author's group. The method is a high-speed remote-sensing method which can also quantitatively detect anisotropy, namely, direction dependence of heat conduction in the material. It was used for determination of the thermal diffusivity and its anisotropic behavior for high-temperature materials such as molten salts, liquid crystals, extended polymer samples, and flowing polymer melts under shear. Interesting applications of the method were demonstrated also for thermal diffusivity mapping and microscale measurement.Invited paper presented at the Twelfth symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

14.
We examine the anatomy of the quantitative properties of thermal transport across a solid-liquid boundary as it is described by acoustic mismatch theory. The single parameter, the Kapitza resistance, is a function of four loss parameters and one thermal transport parameter, the thermal diffusivity of the fluid. The loss parameters are to be determined from the dispersion relations for phonons at the peak of the thermal excitation in the material. The temperature dependence of the Kapitza resistance depends on the variation of the phonon excitation in the material with temperature, the familiar temperature-cubed factor, and the variation of the loss factors with temperature and frequency for phonons at the thermal peak, and the variation of the diffusivity with temperature. Since these parameters are undetermined and experimentally rather inaccessible, we conclude that for the present the Kapitza resistance must be viewed as a technological heat transport parameter. Some discussion is given of the part played by second sound in helium II in the surface heat transport process.  相似文献   

15.
This paper describes measurement of the thermal diffusivity of molten KCl in the temperature range from 804 to 1030°C by the forced Rayleigh scattering method. In this contact-free optical measuring technique for the thermal diffusivity of liquids, a sample needs to be colored by the admixture of a dye for suitable absorption of a heating laser beam. The dye substances employed are CoCl2 and NiCl2, which were chosen through the experimental evaluation. The accuracy is estimated to be ±7% for molten KCl colored with NiCl2. The results converted to thermal conductivity show one of the smallest values among other previous data; the difference is a factor of four. The present study demonstrates the promising applicability of the forced Rayleigh scattering method to the measurement of high-temperature molten salts, which has never be attained by other conventional methods.Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.  相似文献   

16.
The National Metrology Institute of Japan (NMIJ) in AIST has investigated the laser flash method in order to establish a thermal diffusivity standard for solid materials above room temperature. A uniform pulse-heating technique, fast infrared thermometry, and a new data analysis method were developed in order to reduce the uncertainty in thermal diffusivity measurements. The homogeneity and stability of candidate reference materials such as isotropic graphite were tested to confirm their qualification as thermal diffusivity reference materials. Since graphite is not transparent to both the heating laser beam and infrared light for thermometry, the laser flash method can be applied to graphite without black coatings. Thermal diffusivity values of these specimens with different thicknesses, were measured with changing heating laser pulse energies. A unique thermal diffusivity value can be determined for homogeneous materials independent of the specimen thickness, by extrapolating to zero heating laser pulse energy on the plot of apparent thermal diffusivity values measured with the laser flash method as a function of heating laser pulse energy.Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22--27, 2003, Boulder, Colorado, U.S.A.  相似文献   

17.
Many multi-element alloy specimens have been shown to possess a wide variety of near-surface elemental composition profiles, which are significantly different from the bulk composition. Such composition nonuniformity adversely affects the measurement of basic thermophysical properties in alloys. In this paper is presented a new investigation into the mechanisms by which such depth-dependent near-surface elemental composition develops. Specifically, specimens of a low melting-point metallic alloy, Wood's alloy, as a model system are examined under varying thermal cycling conditions within a chamber of controlled gaseous atmosphere. The near-surface composition and thermal diffusivity are measured as a function of depth. The method of time-resolved spectroscopy of laser-produced plasma plumes emanating from the specimen surface is used. Different surface composition profiles emerge depending on the dynamic range of the thermal cycling forced on a specimen.  相似文献   

18.
将一种基于热成像的薄片材料热扩散率测量方法的理论模型由二维拓展到三维,以适用于更大厚度材料的热扩散率测量。指出该方法适用的特征条件为:Z向空间导数值与材料表面和周围环境的温度差值为线性关系。仿真分析了传热距离与激励时间对特征条件的影响以及相关的信噪比问题,并在304不锈钢材料实测实验中依照仿真分析设置传热距离和激励时间以满足特征条件,结果显示厚度为1 mm和2 mm的不锈钢材料测量偏差均在3.0%以内,厚度为5 mm的不锈钢材料测量的偏差为4.1%,从而扩大了该测量方法的适用范围。  相似文献   

19.
It has been well established that thermal forcing of disordered multielement metallic alloys results in permanent modification of their thermal transport properties. The mechanism depends on the detail of heating and its duration, and entails rearrangement of the spatial distribution of constituent atoms within the material proper. It presents a serious complication in developing a body of properties data as a function of temperature because establishment of a thermal state for a specimen is often cast into question. A new general technique is presented for simultaneous multiple-temperature measurements of thermal diffusivity and local composition for a single specimen. The specimen is heated steeply into a state of temperature nonuniformity. The measurement is carried out by time-resolved spectroscopy of single-shot laser-produced plasma (LPP) plume emissions; analysis is made of the emissions as a function of position within the laser focal area. The procedure for analysis is presented together with the results for 80 mass% Ni-20 mass% Cr Nichrome specimens.  相似文献   

20.
Recent advances in polymer layered silicate nanocomposites especially improve flammability resistance; encourage the examination of this unique class of evolving materials as potential ablatives. Polymer layered silicate nanocomposites show excellent potential as ablative heat shields. Determining the thermal diffusivity together with the mass and energy transfer is an important problem encountered in design of heat shield system which pyrolyses and ablates at high temperature. The aim of this work is to give information on the influence of the experimental conditions to the estimated effective thermal diffusivity of ablative nanocomposite and composite materials. Here, we present the inverse solution to estimate the parameter used to identify the effective thermal diffusivity of resol type phenolic resin-asbestos cloth montmorillonite layered silicate nanocomposite and its composite counterpart. The experimental setup consists of a standard oxyacetylene flame test. The transient temperature measurements, taken from the top surface and through the thickness of the samples, are used in the inverse analysis to estimate the change of the effective thermal diffusivity. The results of this work clarify the mechanism of the ablation and thermal diffusivity of the layered silicate nanocomposite heat shields due to the high temperature degradation in comparison with its composite counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号