首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports experimental results lor the viscosity of gaseous HFC-125 (pentafluoroethane) under high pressures. The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K and at pressures up to the saturated vapor pressures at each temperature at subcritical conditions or up to 9 MPa at supercritical temperatures. Intermolecular scaling parameters of HFC-125 for the extended corresponding states were determined from the viscosity data at 0.1 MPa. An empirical viscosity equation is proposed to interpolate the present experimental results as a function of temperature and density.  相似文献   

2.
The viscosity of gaseous HFC-134a (1,1,1,2-tetrafluoroethane) was measured with an oscillating disk viscometer of the Maxwell type from 298.15 to 398.15 K at pressures up to 5.5 MPa. Intermolecular potential parameters for the Lennard–Jones 12-6 model were determined from the viscosity data at 0.1 MPa. The viscosity equation developed by Krauss et al. was applied to correlate the present viscosity data. In addition, the correlations proposed by Stiel and Thodos and by Lee and Thodos were tested for fitting the experimental viscosity data.  相似文献   

3.
This paper reports experimental results for the viscosity of gaseous mixtures of HFC-134a (1,1,1,2-tetrafluoroethane)+HFC-32 (difluoromethane). The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K. The viscosity was measured for three mixtures containing 25.00, 52.40, and 74.98 mole% HFC-134a in HFC-32. Experimental results for the viscosity at normal pressures show a minimum as plotted against mole fraction in the higher temperature region, which may be the first experimental observation of the minima for dilute binary gaseous mixtures of HFCs. The viscosity at normal pressures was analyzed with the extended law of corresponding states developed by Kestin et al., and the scaling parameters were obtained for unlike-pair interactions between HFC-32 and HFC-134a. The modified Enskog theory developed by Vesovic and Wakeham was applied to predict the viscosity for the binary gaseous mixtures under pressure. As for the calculation of pseudo-radial distribution functions in mixtures, a method based on the equation of state for hard-sphere fluid mixtures proposed by Carnahan–Starling was applied.  相似文献   

4.
This paper reports experimental results for the viscosity of gaseous mixtures of HFC-125 (pentafluoroethane)+HFC-32 (difluoromethane). The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15K. The viscosity was measured for three mixtures (mole fraction of HFC-125 is 0.7498, 0.4998, or 0.2475). The viscosity at normal pressure was analyzed with the extended law of corresponding states developed by Kestin et al. and the scaling parameters were obtained for unlike-pair interactions between HFC-125 and HFC-32. The modified Enskog theory developed by Vesovic and Wakeham was applied to predict the viscosity for the binary gaseous mixtures under pressure. For the calculation of the pseudo-radial distribution function in mixtures, a method based on the Carnahan–Starling equation for the radial distribution function of hard sphere mixtures is proposed.  相似文献   

5.
The surface tension of 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2,3,3,3-hepta-fluoropropane (HFC-227ea), and their binary mixture HFC-143a/227ea at 3 nominal mass fractions of 27.91%/72.09%, 49.44%/50.56%, and 74.11%/25.89% were measured in the temperature range from 253 to 333K using the differential capillary rise method (DCRM) under vapor-liquid equilibrium conditions. The temperature and surface tension uncertainties were estimated to be within ±10 mK and ±0.15 mNm–1, respectively. The present data were used to develop a van der Waals-type surface tension correlation for pure HFC-143a and HFC-227ea. Correlations for pure HFC-143a and HFC-227ea were used to develop a surface tension correlation for the experimental data of the HFC-143a/227ea mixtures as a function of the mass fraction.  相似文献   

6.
This paper reports experimental results for the viscosity of gaseous mixtures of HFC-125 (pentafluoroethane) + propane. The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K. The viscosity was measured for two mixtures containing 50.11 and 75.03 mol% HFC-125 in propane. The viscosity at normal pressure was analyzed with the extended law of corresponding states developed by Kestin et al., and the scaling parameters were obtained for unlike-pair interactions between HFC-125 and propane. The modified Enskog theory developed by Vesovic and Wakeham was applied to predict the viscosity for the binary gaseous mixtures under pressure. From comparisons between experimental results and calculated values of the HFC-125 + propane system, it should be concluded that the Vesovic-Wakeham method gives reliable predictions for the viscosity of a gaseous mixture containing both polar and nonpolar compounds.  相似文献   

7.
Various thermophysical properties of refrigerant R143a (1,1,1-trifluoroethane) have been determined under saturation conditions using dynamic light scattering (DLS). Light scattering from bulk fluids was applied for measuring the thermal diffusivity and the sound velocity for both the saturated liquid and vapor phase over a wide temperature range of 273-346 K. The results were also used to obtain information on the specific heat at constant pressure and the isentropic compressibility. Furthermore, the surface tension and liquid kinematic viscosity were determined simultaneously in the temperature range 253-333 K from light scattering by surface waves on a horizontal liquid-vapor interface. All experiments are based on a heterodyne detection scheme and a signal analysis by photon correlation spectroscopy (PCS). The results for R143a are discussed in detail and compared to literature data available.  相似文献   

8.
Thermodynamic properties of 1,1,1-trifluoroethane (R143a) are expresed in terms of a 32-term modified Benedict-Webb-Rubin (MBWR) equation of state. Coefficients are reported for the MBWR equation and for ancillary equations used to lit the ideal-gas heat capacity, and the coexisting densities and pressure along the saturation boundary. The MBWR coefficients were determined from a multiproperty fit that used the following types of experimental data:PVT: isochoric, isobaric, and saturated-liquid heat capacities: second virial coefficients: speed of sound and properties at coexistence. The equation of state was optimized to the experimental data from 162 to 346 K and pressures to 35 MPa with the exception of the critical region. Upon extrapolation to 500 K and 60 MPa, the equation gives thermodynamically reasonable results. Comparisons between calculated and experimental values are presented.  相似文献   

9.
Measurements of the thermal conductivity of HFC-143a that were made by a coaxial cylinder cell operating in steady state are reported. The measurements of the thermal conductivity of HFC-143a were performed along several quasi-isotherms between 300 and 500 K in the gas and liquid phases. The pressure range covered varies from 0.1 to 50 MPa. Based on the measurement of more than 600 points, an empirical equation is provided to describe the thermal conductivity outside the critical region as a function of temperature and density. A careful analysis of the various sources of error leads to an estimated uncertainty of approximately ±1.5%.  相似文献   

10.
A spherical resonator and acoustic signal measurement apparatus have been designed and developed for measuring the speed of sound in the gaseous phase. The inner radius of the spherical resonator, being about 6.177 cm, was determined by measuring the speed of sound in gaseous argon at temperatures between 293 and 323 K and at pressures up to 200 kPa. Measurements of the speed of sound in four halogenated hydrocarbons are presented, the compounds are chlorodifluoromethane (CHClF2 or HCFC-22), 1,1-difluoroethane (CH3CHF2 or HFC-152a), 1,1,1-trifluoroethane (CH3CF3 or HFC-143a), and propane (CH3CH2CH3 or HC-290). Ideal-gas heat capacities and acoustic virial coefficients were directly deduced from the present data. The results were compared with those from other studies. In this work, the experimental uncertainties in temperature, pressure, and speed of sound are estimated to be less than ±14 mK, ±2.0 kPa, and ±0.0037%, respectively. In addition, equations for the ideal-gas isobaric specific heat capacity for HFC-152a, HFC-143a, and propane are proposed, which are applicable in temperature ranges 240 to 400 K for HFC-152a, 250 to 400 K for HFC-143a, 225 to 375 K for propane. The purities for each of the samples of HCFC-22, HFC-152a, HFC-143a, and propane are better than 99.95 mass%.  相似文献   

11.
A fundamental equation of state has been developed for 1,1,1-trifluoroethane (R-143a) using the dimensionless Helmholtz energy. The experimental thermodynamic property data, which cover temperatures from the triple point (161 K) to 433 K and pressures up to 35 MPa, are used to develop the present equation. These data are represented by the present equation within their reported experimental uncertainties: ±0.1% in density for both vapor and liquid phase P––T data, ±1% in isochoric specific heat capacities, and ±0.02% in the vapor phase speed-of-sound data. The extended range of validity of the present model covers temperatures from 160 to 650 K and pressures up to 50 MPa as verified by the thermodynamic behavior of the isobaric heat-capacity values over the entire fluid phase.  相似文献   

12.
For a reliable derivation of the thermodynamic properties in the gaseous phase from thermodynamic equations of state, it has been pointed out that third virial coefficients significantly affect calculations of heat capacities. Among existing equations of state including internationally accepted equations, there is a large discrepancy, sometimes more than 5%, in calculated heat-capacity values near saturation. Two different approaches have been conducted in addressing this problem. One is for providing the third virial coefficient from intermolecular-potential models based on speed-of-sound measurements with a spherical resonator, and another is for confirming the effect of the third virial coefficient on density values near saturation by measuring the density precisely with a magnetic suspension densimeter. This report is focused on the latter case, i.e., precise measurements of density for 1,1,1-trifluoroethane, R143a, near saturation and some important evidence for the necessity of considering third virial coefficients for calculating reliable thermodynamic properties in the gaseous phase.Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China.  相似文献   

13.
The thermal diffusivity and the sound speed of the refrigerant R143a (1,1,1-trifluoroethane) have been determined in the temperature range 273 to 346 K by dynamic light scattering (DLS), a method based on the time-resolved analysis of scattered light intensities, which are caused by microscopic density fluctuations in the sample. The results for R143a are discussed in detail in comparison to data available in the literature. With the help of reference data for the thermal conductivity and density, the experimental data of the thermal diffusivity also allow the derivation of the isobaric heat capacity for both phases under saturation conditions.  相似文献   

14.
This paper presents new measurements of the viscosity of gaseous R407C (23 mass% HFC-32, 25 mass% HFC-125, 52 mass% HFC-143a) and R407E (25 mass% HFC-32, 15 mass% HFC-125, 60 mass% HFC-143a). The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K. The densities of these two fluid mixtures were calculated with the equation-of-state model in REFPROP. The viscosity at normal pressures was analyzed with the extended law of corresponding states developed by Kestin et al., and the scaling parameters needed in the analysis were obtained from our previous studies for the viscosity of the binary mixtures consisting of HFC-32, HFC-125, and HFC-134a. The modified Enskog theory developed by Vesovic and Wakeham (V-W method) was applied to predict the viscosity for the ternary gaseous HFC mixtures under pressure. As for the calculation of pseudo-radial distribution functions in mixtures, a method based on the equation of state for hard-sphere fluid mixtures proposed by Carnahan-Starling was applied. It was found that the V-W method can predict the viscosity of R407C and R407E without any additional parameters for the ternary mixture.  相似文献   

15.
Isothermal vapor–liquid equilibria were measured for the binary systems difluoromethane (HFC-32)+1,1,1,2,3,3,3-heptafluoropropane (HFC-22ea) and 1,1-difluoroethane (HFC-152a)+1,1,1,2,3,3,3-heptafluoropropane at 283.15 and 303.15 K and 1,1,1,2-tetrafluoroethane (HFC-134a)+1,1,1,2,3,3,3-heptafluoropropane at 303.15 and 323.15 K in an apparatus in which both phases were recirculated. The experimental data were correlated with the Peng–Robinson equation of state using the Wong–Sandler mixing rules. Azeotropic behavior has not been found in any of the three mixtures.  相似文献   

16.
The gaseous thermal conductivity of dilluoromethane (HFC-32). pentalluoroethane (HFC-125). and their binary mixtures was measured with a transient hot-wire apparatus in the temperature ranges 283–333 K at pressures up to saturation. The uncertainty of the data is estimated to be within I %. The thermal conductivity as a function of composition of the mixtures at constant pressure and temperature is found to have a small maximum near 0.3–0.4 mole fraction of HFC-32. The gaseous thermal-conductivity data obtained for pure HFC-32 and HFC-125 were correlated with temperature and density together with the liquid thermal-conductivity data from the literature, based on the excess thermal-conductivity concept. The composition dependence of the thermal conductivity at a constant temperature is represented with the aid of the Wassiljewa equation.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado. U.S.A.  相似文献   

17.
Measurements of the thermal conductivity of HFC-32, HFC-125, and HFC-134a were carried out for the first time in both solid and liquid phases at the saturation pressure at room temperature and in the temperature ranges from 120 to 263, from 140 to 213, and from 130 to 295 K, respectively. A transient hot-wire instrument using one bare platinum wire was employed for measurements, with an uncertainty of less than ±2%. The experimental results demonstrated that the thermal conductivity of HFC-32, HFC-125, and HFC-134a in the solid phase showed a positive temperature dependence. For HFC-32 and HFC-125, there were big jumps between the solid and the liquid thermal conductivity at the melting point. But for HFC-134a, the solid and liquid thermal conductivity at the melting point is almost-continuous.  相似文献   

18.
The viscosity of gaseous HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) was measured with an oscillating-disk viscometer of the Maxwell type at temperatures from 323.15 to 423.15 K and at pressures up to the saturated vapor pressure at each temperature in subcritical conditions or up to 2 MPa under supercritical conditions.  相似文献   

19.
Critically evaluated experimental vapor-pressure data sets supplemented with calculated data for low-temperature region were used in the development of vapor-pressure equations. The optimum number of terms, coefficients, and exponents of the Wagner-type equation were derived by means of the Setzmann–Wagner program OPTIM based on the combination of the stepwise regression analysis and evolutionary optimization method. Equations were checked by the reduced enthalpy of vaporization criterion derived from the Clausius–Clapeyron equation and specific volume of ideal gas. An equation developed using 261 experimental data points and low-temperature data calculated by Lüddecke and Magee gives an RMS deviation of 0.102%; a second equation based on the same experimental data and low-temperature data calculated by Tillner-Roth gives an RMS deviation of 0.101% from experimental points. The triple-point pressure extrapolated to the measured temperature T tp = 136.34 K is discussed. Comparisons with vapor pressure equations by Outcalt and McLinden, Duarte-Garza and Magee. and Kubota et al. are also given.  相似文献   

20.
The experimental PVTx properties of a binary refrigerant mixture, R-125 (pentafluoroethane)+R-143a (1,1,1-trifluoroethane), have been measured for a composition of 50 mass% R-125 by a constant-mass method coupled with an expansion procedure in a range of temperatures from 305 to 400 K, pressures from 1.5 to 6.1 MPa, and densities from 92 to 300 kg·m–3. The experimental uncertainties of the present measurements are estimated to be within ±7.2 mK in temperature, ±3.0 kPa in pressure, ±0.12 kg·m–3 in density, and ±0.040 mass% in composition. The sample purities are 99.953 mass% for R-125 and 99.998% for R-143a. Seven saturated vapor densities and dew point pressures of the R-125+R-143a system were determined, on the basis of rather detailed PVTx properties measured in the vicinity of the saturation boundary as well as the thermodynamic behavior of isochores near saturation. The second and third virial coefficients for temperatures from 330 to 400 K were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号