首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用真空固相反应烧结技术制备了YAG透明陶瓷,测试了陶瓷素坯的热膨胀曲线、陶瓷样品的透过光谱及表面微结构。深入研究了Mg O作为烧结助剂,其添加量对YAG透明陶瓷显微结构、光学透过率等性能的影响。结果表明,在1780℃下保温6 h,制备得到具有高透明度的YAG透明陶瓷。0.1%以上(质量分数,下同)的Mg O添加量有利于陶瓷的致密化,但由于第二相的产生及气孔不能排除,严重降低了陶瓷的光学质量;添加0.03%的Mg O最有利于透明陶瓷的烧结,制备得到的陶瓷晶粒尺寸均一,几乎无晶内及晶间气孔,其在波长1200 nm处的透过率约为82%。  相似文献   

2.
氧化锆粉体表面改性及其注射成型水脱脂研究   总被引:1,自引:0,他引:1  
采用硬脂酸表面改性以改善陶瓷颗粒表面和有机粘结剂的相容性.结果表明,硬脂酸和陶瓷颗粒表面之间发生了稳定的化学结合,提高了注射喂料的流动性和坯体的强度.坯体显微结构分析表明,表面改性促进了粉体在有机粘结剂中的稳定分散.粉体表面改性明显提高了水脱脂速率,坯体7 h脱脂率达到了88%,脱脂过程中水溶性组分在坯体中的表观扩散系数为1.14×10-7cm2/s.  相似文献   

3.
由叔丁醇、氧化铝、丙烯酰胺组成的20%(体积分数,下同)陶瓷浆料,在温度梯度的诱导下,用冷冻-凝胶成形法制备了具有定向通孔结构的氧化铝陶瓷坯体.经过烧结后,制备出了高孔隙率、高强度的定向通孔陶瓷,50%气孔率的陶瓷体具有110 MPa的轴向压缩强度.还研究了距离冷端不同位置孔隙的孔径、开孔率变化规律.  相似文献   

4.
 往不锈钢渣中混入氧化物磨成粉体,通过分析其粒度分布与比表面积,用DTA曲线确定工艺制度,烧制了陶瓷坯体样品,得出了粉体必须在杂质含量<1%,Cr2O3在2%~3%之间,渣量不超过30%的情况下,才能烧制出吸水率与显气孔率符合基本性能要求的陶瓷坯体。  相似文献   

5.
采用共沉淀工艺方法制备SiC/YAG陶瓷复合粉体,分析pH值和洗涤剂对共沉淀浆料及复合陶瓷粉体分散性的影响,对比添加剂(Al2O3+Y2O3)和复合陶瓷粉体SiC/(Al2O3+Y2O3)在加热过程中YAG相的形成过程.得出制备该复合陶瓷粉体的溶胶体系适宜pH值为10左右,采用无水乙醇水洗;复合陶瓷粉体在加热过程中YAG相的形成是一个由Y4l2O9→YAlO3→YAG过渡的过程.  相似文献   

6.
以高纯Y_2O_3、Al_2O_3和Nd_2O_3粉体为原料,少量纳米SiO_2为烧结助剂,采用真空烧结方法制备致密的Nd:Y_2Al_5O_(12)(Nd:YAG)陶瓷,并研究球磨处理原料粉体、Y_2O_3原料颗粒度和烧结气氛对Nd:YAG烧结致密化的影响.结果表明,机械合金化氧化物混合粉体,可明显细化氧化物颗粒,促进Nd:YAG的烧结.在1600℃保温8h,对球磨20h的粉体压坯真空烧结得到的Nd:YAG块体相对密度达99%,晶粒大小约为10μm;采用纳米Y_2O_3,粉体作真空烧结原料,可提高烧结活性,获得细晶和高致密度的Nd:YAG陶瓷,对混合粉体球磨20h压坯烧结可得到晶粒大小为2μm、相对密度为98.5%的Nd:YAG块体;在氩气保护下常压烧结,得到的Nd:YAG块体组织难以辨认,而且残留许多孔隙.  相似文献   

7.
本文采用甲基丙烯酸羟乙酯(HEMA)-1,6-己二醇二丙烯酸酯非水基凝胶注模体系制备了浓Mo/Cu粉末浆料。研究了分散剂用量、单体含量和固相体积分数对浆料流变行为的影响。并研究了单体含量、单体/交联剂比例、引发剂用量、温度等工艺参数对固化行为和坯体抗弯强度的影响。结果表明,固相体积分数对浆料就变行为的影响最大,其次是引发剂用量和单体含量。随着单体含量的增加和单体/交联剂比例的减小,坯体抗弯强度增加;引发剂用量对坯体抗弯强度的影响较小。根据上述结果,Mo/Cu粉末非水基凝胶注模的合理工艺参数如下:HEMA含量为25 vol.% ~ 30 vol.%, 单体/交联剂比例为10:1 ~ 15:1,引发剂用量为1.5 vol.% ~ 2.5 vol.%,固化温度在60℃与80℃之间。  相似文献   

8.
采用甲基丙烯酸羟乙酯(HEMA)-1,6-己二醇二丙烯酸酯非水基凝胶注模体系制备了浓Mo/Cu粉末浆料。研究了分散剂用量、单体含量和固相体积分数对浆料流变行为的影响,并讨论了单体含量、单体/交联剂比例、引发剂用量、温度等工艺参数对固化行为和坯体抗弯强度的影响。结果表明,固相体积分数对浆料流变行为的影响最大,其次是引发剂用量和单体含量。随着单体含量的增加和单体/交联剂比例的减小,坯体抗弯强度增加;引发剂用量对坯体抗弯强度的影响较小。根据上述结果,Mo/Cu粉末非水基凝胶注模的合理工艺参数如下:HEMA含量为25%~30%(体积分数),单体/交联剂比例为10:1~15:1,引发剂用量为1.5%~2.5%(体积分数),固化温度在60~80℃之间。  相似文献   

9.
采用两步热压烧结(Hot Pressing, HP)方法制备了高致密度的Y-α-SiAlON(Y1410,即m=1.4, n=1.0)陶瓷,研究了升温速率、烧结时间和驻留温度对陶瓷物相组成、微观结构以及光学性能的影响.结果表明:SiAlON陶瓷的相组成不受升温速率的影响,升温速率较快 (20 ℃/min) 时陶瓷的晶粒尺寸相对较小、分布较均齐、透过率相对较高,1.1 mm厚样品最大近红外透过率为50.2%,比升温速率为10 ℃/min的陶瓷高8.0%;烧结时间较短 (1 h) 时陶瓷的晶粒尺寸相对较小,透过率较高,1.1 mm厚样品最大近红外透过率为43.6%,而当烧结时间为2 h时陶瓷中有新相生成,且微结构均匀性较差,其最大透过率比烧结时间为1 h的低8.0%;较低的驻留温度易促进β-SiAlON形成和柱状晶发育,对提高SiAlON陶瓷透光性不利.  相似文献   

10.
以Y(NO_3)_3、Al(NO_3)_3、Ce(NO_3)_3为母盐,NH_4HCO_3为沉淀剂,在冲击射流反应器中合成YAG:Ce纳米粉体。使用SEM、XRD和荧光光谱仪,对前驱体和煅烧后的YAG:Ce荧光粉体进行表征,分析和讨论了加料速度、分散剂种类、分散剂用量、Ce掺杂量、煅烧温度的影响。在5~70mL/min加料速度范围内,得出10mL/min加料条件下合成的粉体荧光强度最强;选取的3种分散剂(NH_4)_2SO_4、乙二醇和聚乙二醇(PEG),都能提高粉体分散性,在同等添加量下,(NH4)2SO4的分散性最好,最佳加入量为金属母盐质量分数2.0%;考察了Ce的掺杂摩尔量x=1.0%~9.0%((Y1-xCex)3Al5O12),掺杂量为x=3.0%时荧光粉的发光强度最大。合成的前驱体在1000℃煅烧5h后能得到纯YAG相,粉体的结晶度和荧光强度均随着煅烧温度的升高而增强;在优化后的条件下合成粉体,经1000℃煅烧5h后,将粉体压制成坯体,经过1680℃真空烧结8h和在空气中1450℃退火2h,两面抛光后,制备出YAG:Ce透明陶瓷。  相似文献   

11.
选择Al2O3(YAG)作为基体片层材料,LaPO4作为界面层材料.采用凝胶注模成型技术制备出基体层材料的坯片,然后在基体层坯片上采用浸渍或喷涂工艺附着界面层材料,最后将坯片叠置于模具中热压烧结.制备的陶瓷复合材料微观结构均匀,基体片层厚度为110 μm~150 μm,界面层厚度为10 μm~30 μm,实测层厚比为11.重点研究了工艺参数及界面层成分对层状陶瓷复合材料室温性能的影响.结果表明氧化物基层状陶瓷复合材料的抗弯强度比基体材料略有下降,但室温断裂韧性达到了13.52 MPa.m1/2,是基体材料断裂韧性的3倍.还对比了氧化物基层状陶瓷复合材料与基体材料在断裂过程中裂纹扩展路径的差异.  相似文献   

12.
采用固相反应法用不同的烧结速率在1850℃烧结合成过烧钇铝石榴石(YAG)陶瓷,YAG陶瓷晶界形貌随烧结速率的变化而不同.高纯的α-Al2O3和Y2O3原料粉体经高能球磨在1400℃空气中煅烧,生成主相为YAG相的多相粉体化合物.真空烧结YAG陶瓷时烧结速率800 ℃/h并在1850 ℃真空烧结4 h会使陶瓷中晶粒长大不充分,晶粒与晶粒之间仍保留明显的面接触,陶瓷内部残存大量直径约1 lμm的气孔,尺寸与可见光波长接近,对透过率的影响大,陶瓷成半透明;在以100 ℃/h升至1850 ℃真空烧结4 h的YAG多晶陶瓷半透明化,陶瓷晶粒粗大,晶界宽化且保留熔融态凝固,用TEM及EDS确认晶界处存在α-Al2O3和钙钛型YAP共晶相.  相似文献   

13.
采用溶胶-凝胶法和机械共混法分别引入烧结助剂YAG(Y3Al5O12)和Al2O3 Y2O3制备复合粉体,经过无压液相烧结制备碳化硅陶瓷材料,分析了烧结助剂引入方式对碳化硅陶瓷烧结、性能及结构的影响机制.研究结果表明,在1 950℃烧结45 min时,机械共混法制备的复合粉体可以获得较好的烧结性能,陶瓷具有较好的力学性能和显微结构,而溶胶-凝胶法制备的复合粉体则存在过烧.经烧结工艺优化,溶胶-凝胶法制备的复合粉体在1 860℃烧结1 h后,陶瓷可以获得更优的烧结性能、力学性能及更理想的显微结构.复合粉体中YAG相的提前形成及均匀分布促进复合粉体的快速致密,降低烧结温度,改善陶瓷的力学性能及显微结构.细晶、裂纹偏转和晶粒桥联是碳化硅陶瓷的主要增韧机制.  相似文献   

14.
采用固相反应法用不同的烧结速率在1850℃烧结合成过烧钇铝石榴石(YAG)陶瓷,YAG陶瓷晶界形貌随烧结速率的变化而不同。高纯的毋Al2O3和Y2O3原料粉体经高能球磨在1400℃空气中煅烧,生成主相为YAG相的多相粉体化合物。真空烧结YAG陶瓷时烧结速率800℃/h并在1850℃真空烧结4h会使陶瓷中晶粒长大不充分,晶粒与晶粒之间仍保留明显的面接触,陶瓷内部残存大量直径约1μm的气孔,尺寸与可见光波长接近,对透过率的影响大,陶瓷成半透明;在以100~C/h升至1850℃真空烧结4h的YAG多晶陶瓷半透明化,陶瓷晶粒粗大,晶界宽化且保留熔融态凝固,用TEM及EDS确认晶界处存在毋α-Al2O3和钙钛型YAP共晶相。  相似文献   

15.
利用压汞仪、扫描电镜对陶瓷注射成型超临界CO2脱脂过程中不同阶段坯体孔洞结构和分布进行分析,研究陶瓷注射成型超临界流体脱脂行为和脱脂的动力学过程.结果显示随着脱脂时间的增加,陶瓷坯体中孔径和孔体积增大,孔尺寸分布明显拓宽.脱脂过程是由坯体表面不断深入到坯体内部,溶解和扩散是脱脂过程的两个关键因素.  相似文献   

16.
通过凝胶注模工艺制备多孔铝铜合金。研究凝胶注模工艺参数如单体含量、交联剂与单体的比例、分散剂和引发体系4个因素对坯体高度、固化时间和坯体品质3个指标的影响。其中分散剂对坯体高度,单体对坯体质量的影响最大。通过分析得出最佳工艺为:单体体积分数10%、交联剂体积分数2%、引发剂体积分数0.2%、分散剂质量1.2 g,在此条件下坯体呈现最好的品质。同时探讨工艺参数消除裂纹和形成孔结构的机理。利用压汞法得出孔直径在10~10000 nm范围内,开孔气孔率达到38.78%。  相似文献   

17.
翁柯 《硬质合金》1999,16(4):219-222
对氧化铝陶瓷的凝胶铸成型工艺进行研究、研究低粘度、高固相体积分数悬浮体的制备及其固化过程.研究成型坯体干燥和成型剂脱除工艺.并通过凝胶铸成型工艺制备出形状复杂、致密的陶瓷部件。制成的AI2O3陶瓷部件组织结构均匀、尺寸精确,坯体体积密度不低于50vol%,坯体允许进行机械加工.干燥和脱除成型剂后坯体无变形开裂。  相似文献   

18.
陈宇  潘正凯  陈均 《表面技术》2017,46(7):26-31
目的研究水性聚苯胺/海泡石/丙烯酸乳液复合防腐涂层在NaCl溶液中对马口铁的防腐效果。方法采用原位化学氧化聚合方法,制备了聚苯胺/海泡石复合材料,并以丙烯酸乳液为成膜物质,制备了水性聚苯胺/海泡石/丙烯酸乳液复合防腐蚀涂层材料。通过扫描电镜和EDX对聚苯胺/海泡石复合材料的结构和形貌进行了表征。利用电化学交流阻抗谱、塔菲尔曲线和硫酸铜点滴试验,研究了海泡石/苯胺投料比、聚苯胺/海泡石复合材料用量、磷酸浓度等对复合涂层防腐性能的影响。结果扫描电镜观察显示,苯胺/海泡石复合材料具有纤维状结构。电化学测试及硫酸铜点滴试验表明,当海泡石/苯胺投料比为6:10、聚苯胺/海泡石复合材料用量为0.2%、磷酸浓度为0.1 mol/L时,其腐蚀电流密度为1.013X10~(-6)A/cm~2,腐蚀电位为-0.385V,极化电阻为14 350.8?,耐硫酸铜腐蚀时间为275 s,防腐效果最佳。结论当海泡石/苯胺投料比为6:10、聚苯胺/海泡石复合材料用量为0.2%、磷酸浓度为0.1 mol/L时,水性聚苯胺/海泡石/丙烯酸乳液复合防腐涂层对马口铁具有最佳的防腐效果。  相似文献   

19.
以CePO4与Ce-ZrO2等比例混合的含粘结剂的料浆为连接材料,在坯体状态下无压连接了可加工CePO4/Ce—ZrO2陶瓷与Ce-ZrO22陶瓷。对影响接点性能的工艺条件进行了讨论,材料的烧成温度和保温时间会明显影响连接效果,对25CePO4.Ce—ZrO2/Ce-ZrO2体系,在1450℃保温120min左右时,可实现最佳的连接效果。接点SEM分析表明,25CePO4/Ce—ZrO2和Ce-ZrO2连接体系中可形成结构均匀的扩散接点区域,其微观结构与母体材料的基本一致,接点的平均抗弯强度也与母体材料相似。用坯体无压连接法适合复杂形状本体或异体组合陶瓷构件,其工艺流程简单,加工成本低廉。  相似文献   

20.
以粒径为15μm的ZrB_2粉末作为原料,在烧结温度1800℃、压力30 MPa条件下,采用放电等离子烧结(SPS)制备出单相ZrB_2陶瓷,并研究了不同加热速率和不同保温时间对ZrB_2陶瓷烧结体烧结行为、物相、微观结构、致密度及开、闭孔率的影响。采用XRD、FESEM分别分析了样品的相组成和微观形貌,采用阿基米德排水法测量了样品的致密度、开孔率和闭孔率。结果表明,加热速率和保温时间对ZrB_2陶瓷烧结体的物相、微观结构及致密度等影响显著,并得出加热速率150℃/min和保温时间5 min为最佳烧结工艺,所制备出的ZrB_2陶瓷烧结体纯度高、致密度为95.1%、开孔率为1.2%、闭孔率为3.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号