首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove lower bounds on the complexity of maintaining fully dynamic k -edge or k -vertex connectivity in plane graphs and in (k-1) -vertex connected graphs. We show an amortized lower bound of (log n / {k (log log n} + log b)) per edge insertion, deletion, or query operation in the cell probe model, where b is the word size of the machine and n is the number of vertices in G . We also show an amortized lower bound of (log n /(log log n + log b)) per operation for fully dynamic planarity testing in embedded graphs. These are the first lower bounds for fully dynamic connectivity problems. Received January 1995; revised February 1997.  相似文献   

2.
We consider the problem of updating a single-source shortest path in either a directed or an undirected graph, with positive real edge weights. Our algorithms for the incremental problem (handling edge insertions and cost decrements) work for any graph; they have optimal space requirements and query time, but their performances depend on the class of the considered graph. The cost of updates is computed in terms of amortized complexity and depends on the size of the output modifications. In the case of graphs with bounded genus (including planar graphs), graphs with bounded arboricity (including bounded degree graphs), and graphs with bounded treewidth, the incremental algorithms require O(log n) amortized time per vertex update, where a vertex is considered updated if it reduces its distance from the source. For general graphs with n vertices and m edges our incremental solution requires O( log n) amortized time per vertex update. We also consider the decremental problem for planar graphs, providing algorithms and data structures with analogous performances. The algorithms, based on Dijkstra's technique [6], require simple data structures that are really suitable for a practical and straightforward implementation. Received January 1995; revised February 1997.  相似文献   

3.
We present a model for edge updates with restricted randomness in dynamic graph algorithms and a general technique for analyzing the expected running time of an update operation. This model is able to capture the average case in many applications, since (1) it allows restrictions on the set of edges which can be used for insertions and (2) the type (insertion or deletion) of each update operation is arbitrary, i.e., not random. We use our technique to analyze existing and new dynamic algorithms for the following problems: maximum cardinality matching, minimum spanning forest, connectivity, 2-edge connectivity, k -edge connectivity, k -vertex connectivity, and bipartiteness. Given a random graph G with m 0 edges and n vertices and a sequence of l update operations such that the graph contains m i edges after operation i , the expected time for performing the updates for any l is in the case of minimum spanning forests, connectivity, 2-edge connectivity, and bipartiteness. The expected time per update operation is O(n) in the case of maximum matching. We also give improved bounds for k -edge and k -vertex connectivity. Additionally we give an insertions-only algorithm for maximum cardinality matching with worst-case O(n) amortized time per insertion. Received June 11, 1995; revised March 8, 1996.  相似文献   

4.
Abstract. We present an optimal parallel randomized algorithm for the Voronoi diagram of a set of n nonintersecting (except possibly at endpoints) line segments in the plane. Our algorithm runs in O(log n) time with high probability using O(n) processors on a CRCW PRAM. This algorithm is optimal in terms of work done since the sequential time bound for this problem is Ω(n log n) . Our algorithm improves by an O(log n) factor the previously best known deterministic parallel algorithm, given by Goodrich, ó'Dúnlaing, and Yap, which runs in O( log 2 n) time using O(n) processors. We obtain this result by using a new ``two-stage' random sampling technique. By choosing large samples in the first stage of the algorithm, we avoid the hurdle of problem-size ``blow-up' that is typical in recursive parallel geometric algorithms. We combine the two-stage sampling technique with efficient search and merge procedures to obtain an optimal algorithm. This technique gives an alternative optimal algorithm for the Voronoi diagram of points as well (all other optimal parallel algorithms for this problem use the transformation to three-dimensional half-space intersection).  相似文献   

5.
Given a graph G=(V, E) with n vertices and m edges, the k-connectivity of G denotes either the k-edge connectivity or the k-vertex connectivity of G. In this paper, we deal with the fully dynamic maintenance of k-connectivity of G in the parallel setting for k=2, 3. We study the problem of maintaining k-edge/vertex connected components of a graph undergoing repeatedly dynamic updates, such as edge insertions and deletions, and answering the query of whether two vertices are included in the same k-edge/vertex connected component. Our major results are the following: (1) An NC algorithm for the 2-edge connectivity problem is proposed, which runs in O(log n log(m/n)) time using O(n3/4) processors per update and query. (2) It is shown that the biconnectivity problem can be solved in O(log2 n ) time using O(nα(2n, n)/logn) processors per update and O(1) time with a single processor per query or in O(log n logn/m) time using O(nα(2n, n)/log n) processors per update and O(logn) time using O(nα(2n, n)/logn) processors per query, where α(.,.) is the inverse of Ackermann's function. (3) An NC algorithm for the triconnectivity problem is also derived, which takes O(log n logn/m+logn log log n/α(3n, n)) time using O(nα(3n, n)/log n) processors per update and O(1) time with a single processor per query. (4) An NC algorithm for the 3-edge connectivity problem is obtained, which has the same time and processor complexities as the algorithm for the triconnectivity problem. To the best of our knowledge, the proposed algorithms are the first NC algorithms for the problems using O(n) processors in contrast to Ω(m) processors for solving them from scratch. In particular, the proposed NC algorithm for the 2-edge connectivity problem uses only O(n3/4) processors. All the proposed algorithms run on a CRCW PRAM  相似文献   

6.
Recent work in dynamic graph algorithms has led to efficient algorithms for dynamic undirected graph problems such as connectivity. However, no efficient deterministic algorithms are known for the dynamic versions of fundamental directed graph problems like strong connectivity and transitive closure, as well as some undirected graph problems such as maximum matchings and cuts. We provide some explanation for this lack of success by presenting quadratic lower bounds on the certificate complexity of the seemingly difficult problems, in contrast to the known linear certificate complexity for the problems which have efficient dynamic algorithms. In many applications of dynamic (di)graph problems, a certain form of lookahead is available. Specifically, we consider the problems of assembly planning in robotics and the maintenance of relations in databases. These give rise to dynamic strong connectivity and dynamic transitive closure problems, respectively. We explain why it is reasonable, and indeed natural and desirable, to assume that lookahead is available in these two applications. Exploiting lookahead to circumvent their inherent complexity, we obtain efficient dynamic algorithms for strong connectivity and transitive closure. Received August 11, 1995; revised August 23, 1996.  相似文献   

7.
We consider graphs whose vertices may be in one of two different states: either on or off . We wish to maintain dynamically such graphs under an intermixed sequence of updates and queries. An update may reverse the status of a vertex, by switching it either on or off , and may insert a new edge or delete an existing edge. A query tests whether any two given vertices are connected in the subgraph induced by the vertices that are on . We give efficient algorithms that maintain information about connectivity on planar graphs in O( log 3 n) amortized time per query, insert, delete, switch-on, and switch-off operation over sequences of at least Ω(n) operations, where n is the number of vertices of the graph. Received September 1997; revised January 1999.  相似文献   

8.
In this paper we introduce a general framework for casting fully dynamic transitive closure into the problem of reevaluating polynomials over matrices. With this technique, we improve the best known bounds for fully dynamic transitive closure. In particular, we devise a deterministic algorithm for general directed graphs that achieves O(n 2) amortized time for updates, while preserving unit worst-case cost for queries. In case of deletions only, our algorithm performs updates faster in O(n) amortized time. We observe that fully dynamic transitive closure algorithms with O(1) query time maintain explicitly the transitive closure of the input graph, in order to answer each query with exactly one lookup (on its adjacency matrix). Since an update may change as many as Ω(n 2) entries of this matrix, no better bounds are possible for this class of algorithms. This work has been partially supported by the Sixth Framework Programme of the EU under contract number 507613 (Network of Excellence “EuroNGI: Designing and Engineering of the Next Generation Internet”), and number 001907 (“DELIS: Dynamically Evolving, Large Scale Information Systems”), and by the Italian Ministry of University and Research (Project “ALGO-NEXT: Algorithms for the Next Generation Internet and Web: Methodologies, Design and Experiments”). Portions of this paper have been presented at the 41st Annual Symp. on Foundations of Computer Science, 2000.  相似文献   

9.
Algorithms for a Class of Isotonic Regression Problems   总被引:4,自引:0,他引:4  
The isotonic regression problem has applications in statistics, operations research, and image processing. In this paper a general framework for the isotonic regression algorithm is proposed. Under this framework, we discuss the isotonic regression problem in the case where the directed graph specifying the order restriction is a directed tree with n vertices. A new algorithm is presented for this case, which can be regarded as a generalization of the PAV algorithm of Ayer et al. Using a simple tree structure such as the binomial heap, the algorithm can be implemented in O(n log n) time, improving the previously best known O(n 2 ) time algorithm. We also present linear time algorithms for special cases where the directed graph is a path or a star. Received September 2, 1997; revised January 2, 1998, and February 16, 1998.  相似文献   

10.
Distance labeling schemes are composed of a marker algorithm for labeling the vertices of a graph with short labels, coupled with a decoder algorithm allowing one to compute the distance between any two vertices directly from their labels (without using any additional information). As applications for distance labeling schemes concern mainly large and dynamically changing networks, it is of interest to study distributed dynamic labeling schemes. The current paper considers the problem on dynamic trees, and proposes efficient distributed schemes for it. The paper first presents a labeling scheme for distances in the dynamic tree model, with amortized message complexity O(log2 n) per operation, where n is the size of the tree at the time the operation takes place. The protocol maintains O(log2 n) bit labels. This label size is known to be optimal even in the static scenario. A more general labeling scheme is then introduced for the dynamic tree model, based on extending an existing static tree labeling scheme to the dynamic setting. The approach fits a number of natural tree functions, such as distance, separation level, and flow. The main resulting scheme incurs an overhead of an O(log n) multiplicative factor in both the label size and amortized message complexity in the case of dynamically growing trees (with no vertex deletions). If an upper bound on n is known in advance, this method yields a different tradeoff, with an O(log2 n/log log n) multiplicative overhead on the label size but only an O(log n/log log n) overhead on the amortized message complexity. In the fully dynamic model the scheme also incurs an increased additive overhead in amortized communication, of O(log2 n) messages per operation.  相似文献   

11.
In this paper we present deterministic parallel algorithms for the coarse-grained multicomputer (CGM) and bulk synchronous parallel (BSP) models for solving the following well-known graph problems: (1) list ranking, (2) Euler tour construction in a tree, (3) computing the connected components and spanning forest, (4) lowest common ancestor preprocessing, (5) tree contraction and expression tree evaluation, (6) computing an ear decomposition or open ear decomposition, and (7) 2-edge connectivity and biconnectivity (testing and component computation). The algorithms require O(log p) communication rounds with linear sequential work per round (p = no. processors, N = total input size). Each processor creates, during the entire algorithm, messages of total size O(log (p) (N/p)) . The algorithms assume that the local memory per processor (i.e., N/p ) is larger than p ε , for some fixed ε > 0 . Our results imply BSP algorithms with O(log p) supersteps, O(g log (p) (N/p)) communication time, and O(log (p) (N/p)) local computation time. It is important to observe that the number of communication rounds/ supersteps obtained in this paper is independent of the problem size, and grows only logarithmically with respect to p . With growing problem size, only the sizes of the messages grow but the total number of messages remains unchanged. Due to the considerable protocol overhead associated with each message transmission, this is an important property. The result for Problem (1) is a considerable improvement over those previously reported. The algorithms for Problems (2)—(7) are the first practically relevant parallel algorithms for these standard graph problems. Received July 5, 2000; revised April 16, 2001.  相似文献   

12.
This paper presents several deterministic algorithms for selecting the k th largest record from a set of n records on any n -node hypercubic network. All of the algorithms are based on the selection algorithm of Cole and Yap, as well as on various sorting algorithms for hypercubic networks. Our fastest algorithm runs in O( lg n lg * n) time, very nearly matching the trivial lower bound. Previously, the best upper bound known for selection was O( lg n lg lg n) . A key subroutine in our O( lg n lg * n) time selection algorithm is a sparse version of the Sharesort algorithm that sorts n records using p processors, , in O( lg n ( lg lg p - lg lg (p/n) ) 2 ) time. Received March 23, 1994; revised October 30, 1997.  相似文献   

13.
In this paper a parallel algorithm is given that, given a graph G=(V,E) , decides whether G is a series parallel graph, and, if so, builds a decomposition tree for G of series and parallel composition rules. The algorithm uses O(log \kern -1pt |E|log ^\ast \kern -1pt |E|) time and O(|E|) operations on an EREW PRAM, and O(log \kern -1pt |E|) time and O(|E|) operations on a CRCW PRAM. The results hold for undirected as well as for directed graphs. Algorithms with the same resource bounds are described for the recognition of graphs of treewidth two, and for constructing tree decompositions of treewidth two. Hence efficient parallel algorithms can be found for a large number of graph problems on series parallel graphs and graphs with treewidth two. These include many well-known problems like all problems that can be stated in monadic second-order logic. Received July 15, 1997; revised January 29, 1999, and June 23, 1999.  相似文献   

14.
In this paper we consider the problem of computing the connected components of the complement of a given graph. We describe a simple sequential algorithm for this problem, which works on the input graph and not on its complement, and which for a graph on n vertices and m edges runs in optimal O(n+m) time. Moreover, unlike previous linear co-connectivity algorithms, this algorithm admits efficient parallelization, leading to an optimal O(log n)-time and O((n+m)log n)-processor algorithm on the EREW PRAM model of computation. It is worth noting that, for the related problem of computing the connected components of a graph, no optimal deterministic parallel algorithm is currently available. The co-connectivity algorithms find applications in a number of problems. In fact, we also include a parallel recognition algorithm for weakly triangulated graphs, which takes advantage of the parallel co-connectivity algorithm and achieves an O(log2 n) time complexity using O((n+m2) log n) processors on the EREW PRAM model of computation.  相似文献   

15.
Given a set of n intervals representing an interval graph, the problem of finding a maximum matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model. In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the problem, our algorithms compute a maximum matching in O( log 3 n) time using O(n/ log 2 n) processors on the EREW PRAM and using n processors on the hypercubes. For the case of proper interval graphs, our algorithm runs in O( log n ) time using O(n) processors if the input intervals are not given already sorted and using O(n/ log n ) processors otherwise, on the EREW PRAM. On n -processor hypercubes, our algorithm for the proper interval case takes O( log n log log n ) time for unsorted input and O( log n ) time for sorted input. Our parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping intervals in proper interval graphs. Received November 20, 1995; revised September 3, 1998.  相似文献   

16.
Two vertices of an undirected graph are called k -edge-connected if there exist k edge-disjoint paths between them (equivalently, they cannot be disconnected by the removal of less than k edges from the graph). Equivalence classes of this relation are called classes of k -edge-connectivity or k -edge-connected components. This paper describes graph structures relevant to classes of 4 -edge-connectivity and traces their transformations as new edges are inserted into the graph. Data structures and an algorithm to maintain these classes incrementally are given. Starting with the empty graph, any sequence of q Same-4-Class? queries and n Insert-Vertex and m Insert-Edge updates can be performed in O(q + m + n log n) total time. Each individual query requires O(1) time in the worst-case. In addition, an algorithm for maintaining the classes of k -edge-connectivity (k arbitrary) in a (k-1) -edge-connected graph is presented. Its complexity is O(q + m + n) , with O(M +k 2 n log (n/k)) preprocessing, where M is the number of edges initially in the graph and n is the number of its vertices. Received July 5, 1995; revised October 21, 1996.  相似文献   

17.
E. Ruppert 《Algorithmica》2000,28(2):242-254
A concurrent-read exclusive-write PRAM algorithm is developed to find the k shortest paths between pairs of vertices in an edge-weighted directed graph. Repetitions of vertices along the paths are allowed. The algorithm computes an implicit representation of the k shortest paths to a given destination vertex from every vertex of a graph with n vertices and m edges, using O(m+nk log 2 k) work and O( log^3k log ^*k+ log n( log log k+ log ^*n)) time, assuming that a shortest path tree rooted at the destination is pre-computed. The paths themselves can be extracted from the implicit representation in O( log k + log n) time, and O(n log n +L) work, where L is the total length of the output. Received July 2, 1997; revised June 18, 1998.  相似文献   

18.
N. Gupta  S. Sen 《Algorithmica》2001,31(2):179-207
We describe an efficient parallel algorithm for hidden-surface removal for terrain maps. The algorithm runs in O(log 4 n) steps on the CREW PRAM model with a work bound of O((n+k) \polylog ( n)) where n and k are the input and output sizes, respectively. In order to achieve the work bound we use a number of techniques, among which our use of persistent data structures is somewhat novel in the context of parallel algorithms. Received July 29, 1998; revised October 5, 1999.  相似文献   

19.
A dynamic connectivity problem consists of an initial graph, and a sequence of operations consisting of graph modifications and graph connectivity tests. The size n of the problem is the sum of the maximum number of vertices and edges of the derived graph, plus the number of operations to be executed. Each graph modification is a deletion of either an edge or an isolated vertex. Each graph connectivity test is to determine if there exists a path in the current graph between two given vertices (the vertices can vary for distinct tests). The best previously known time for this dynamic connectivity problem was Ω(n2).Our main result is an O(ng+n log n) time algorithm for the dynamic connectivity problem in the case of the maximum genus of the derived graph being g.  相似文献   

20.
We study deterministic gossiping in ad hoc radio networks with large node labels. The labels (identifiers) of the nodes come from a domain of size N which may be much larger than the size n of the network (the number of nodes). Most of the work on deterministic communication has been done for the model with small labels which assumes N = O(n). A notable exception is Peleg's paper, where the problem of deterministic communication in ad hoc radio networks with large labels is raised and a deterministic broadcasting algorithm is proposed, which runs in O(n2log n) time for N polynomially large in n. The O(nlog2n)-time deterministic broadcasting algorithm for networks with small labels given by Chrobak et al. implies deterministic O(n log N log n)-time broadcasting and O(n2log2N log n)-time gossiping in networks with large labels. We propose two new deterministic gossiping algorithms for ad hoc radio networks with large labels, which are the first such algorithms with subquadratic time for polynomially large N. More specifically, we propose: a deterministic O(n3/2log2N log n)-time gossiping algorithm for directed networks; and a deterministic O(n log2N log2n)-time gossiping algorithm for undirected networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号