首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstruction of a continuous time signal from its periodic nonuniform samples and multi-channel samples is fundamental for multi-channel parallel A/D and MIMO systems. In this paper, with a filterbank interpretation of sampling schemes, the efficient interpolation and reconstruction methods for periodic nonuniform sampling and multi-channel sampling in the fractional Fourier domain are presented. Firstly, the interpolation and sampling identities in the fractional Fourier domain are derived by the properties of the fractional Fourier transform. Then, the particularly efficient filterbank implementations for the periodic nonuniform sampling and the multi-channel sampling in the fractional Fourier domain are introduced. At last, the relationship between the multi-channel sampling and the filterbank in the fractional Fourier domain is investigated, which shows that any perfect reconstruction filterbank can lead to new sampling and reconstruction strategies. Supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60625104), the National Natural Science Foundation of China (Grant Nos. 60890072, 60572094) and the National Key Basic Research Program Founded by MOST (Grant No. 2009CB724003)  相似文献   

2.
The stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback bang-bang control is first introduced. Then, two time delay compensation methods, namely the method of changing control force amplitude (CFA) and the method of changing control delay time (CDT), are proposed. The conditions applicable to each compensation method are discussed. Finally, an example is worked out in detail to illustrate the application and effectiveness of the proposed methods and the two compensation methods in combination. Supported by the National Natural Science Foundation of China (Grant No. 10772159), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060335125), Zhejiang Natural Science Foundation (Grant No. Y7080070), and Fujian Provincial Science and Technology Project (Grant No. 2005YZ1021)  相似文献   

3.
To study the nonlinear dynamic behavior of the bladed overhang rotor system with squeeze film damper (SFD), a blade-overhang rotor-SFD model is formulated using the lumped mass method and the Lagrange approach. The cavitated short bearing model is employed to describe the nonlinear oil force of the SFD. To reduce the scale of the nonlinear coupling system, a set of orthogonal transformations is employed to decouple the one nodal diameter equations of blades, which are coupled with the dy- namical equations ...  相似文献   

4.
Microwave-induced thermo-acoustic tomography (MITAT) is a promising technique with great potential in biomedical imaging. It has both the high contrast of the microwave imaging and the high resolution of the ultrasound imaging. In this paper, the proportional relationship between the absorbed microwave energy distribution and the induced ultrasound source distribution is derived. Further, the time reversal mirror (TRM) technique based on the pseudo-spectral time domain (PSTD) method is applied to MITAT system. The simulation results show that high contrast and resolution can be achieved by the TRM technique based on PSTD method even for the received signals with very low signal-to-noise ratio (SNR) and the model parameter with random fluctuation. Supported by the National Natural Science Foundation of China (Grant No. 60771042), the National Hi-Tech Research and Development Program (“863” Project) (Grant No. 2007AA12Z159), 111 Project (Grant No. B07046), SiChuan Excellent Youth Foundation (Grant No. 08ZQ026-039), Program for New Century Excellent Talents in University of China and Program for Changjiang Scholars  相似文献   

5.
A model of curvature and tip deflection of multilayer thermal cantilever actuators is derived. The simplified expression received from the model avoids inverting complex matrices enhances understanding and makes it easier to optimize the structure parameters. Experiment is performed, the modeled and experimental results demonstrate the validity of the model, and it also indicates that Young’s module makes great contribution to the deflection; therefore, thin layers cannot be ignored arbitrarily. Supported by the National Natural Science Foundation of China (Grant No. 60576053) and Hi-Tech Research and Development Program of China (Grant No. 2007AA03Z333)  相似文献   

6.
With the rapid development of functional magnetic resonance imaging (fMRI) technology, the spatial resolution of fMRI data is continuously growing. This provides us the possibility to detect the fine-scale patterns of brain activities. The established univariate and multivariate methods to analyze fMRI data mostly focus on detecting the activation blobs without considering the distributed fine-scale patterns within the blobs. To improve the sensitivity of the activation detection, in this paper, multivariate statistical method and univariate statistical method are combined to discover the fine-grained activity patterns. For one voxel in the brain, a local homogenous region is constructed. Then, time courses from the local homogenous region are integrated with multivariate statistical method. Univariate statistical method is finally used to construct the interests of statistic for that voxel. The approach has explicitly taken into account the structures of both activity patterns and existing noise of local brain regions. Therefore, it could highlight the fine-scale activity patterns of the local regions. Experiments with simulated and real fMRI data demonstrate that the proposed method dramatically increases the sensitivity of detection of fine-scale brain activity patterns which contain the subtle information about experimental conditions. Supported by Chair Professors of Changjiang Scholars Program and CAS Hundred Talents Program, National Program on Key Basic Research Projects (Grant No. 2006CB705700), National High-Tech R&D Program of China (Grant No.2006AA04Z216), National Key Technology R&D Program (Grant No. 2006BAH02A25), Joint Research Fund for Overseas Chinese Young Scholars (Grant No.30528027), National Natural Science Foundation of China (Grant Nos.30600151, 30500131 and 60532050), and Natural Science Foundation of Beijing (Grant Nos. 4051002 and 4071003)  相似文献   

7.
The phonon spectrum of ordered zincblende Si50Ge50 alloy is calculated by ab initio method. The energy band structure at zero pressure and the pressure dependence of phonon dispersion curves are shown up to 20 GPa. The calculation finds a pressure-induced softening of the transverse acoustic phonon mode and the mode frequency reaching zero at about 14 GPa, which indicate breaking of the symmetry and formation of a new phase under high pressure. Supported by the National Natural Science Foundation of China (Grant No. 50771090), the State Key Program for Basic Research of China (Grant No. 2005CB724404) and the Program for Changjiang Scholars and Innovative Team (Grant No. IRT0650)  相似文献   

8.
The extended finite element method (XFEM) is a new numerical method for modeling discontinuity. Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored. By building the virtual work principle of the fracture problem considering water pressure on the crack surface, the governing equations of XFEM for hydraulic fracture modeling are derived. Implementation of the XFEM for hydraulic fracturing is presented. Finally, the method is verified by two examples and the advan- tages of ...  相似文献   

9.
A kind of erbium doped photosensitive fiber (EDPF) was proposed and fabricated, whose core was made of double layers named photosensitive layer and erbium doped layer. The double-layer core design can overcome difficulties in fabrication of EDPF with single core design, i.e. the conflict between the high consistency rare earth doping and high consistency germanium doping. A sample was fabricated through the modified chemical vapor deposition method combined with solution doping technique. The peak absorption coefficient was 48.80 dB/m at 1.53 μm, the background loss was lower than 0.1 dB/m, and the reflectivity of the fiber Brag gratings (FBG) written directly on the sample fiber was up to 97.3% by UV-writing technology. Moreover, a C band tunable fiber laser was fabricated using the sample fiber, in which a uniform FBG was written directly on EDPFs as a reflector. A single wavelength lasing with a maximum wavelength tuning range of 1555.2–1558.0 nm was achieved experimentally. Within this tuning range, the full-width at half maximum (FWHM) of the laser output was smaller than 0.015 nm and the side mode suppression ratio (SMSR) was better than 50 dB. Supported by the National High Technology Research and Development Program of China (863 Project) (Grant No. 2007AA01Z258), the National Natural Science Foundation of China (Grant No. 60771008), Program for New Century Excellent Talents in University (Grant No. NCET-06-0076), Beijing Natural Science Foundation (Grant No. 4052023), and the Beijing Jiaotong University Foundation (Grant No. 2006XM003)  相似文献   

10.
A new type of ultra-lightweight metallic lattice structure (named as the X-type structure) is reported. This periodic structure was formed by two groups of staggered struts in the traditional pyramid structure, and fabricated by folding expanded metal sheet along rows of offset nodes and then brazing the folded structure (as the core) with top and bottom facesheets to form sandwich panels. The out-of-plane compressive and shear properties of the X-type lattice sandwich structure were investigated experimentally and compared to those of the sandwich having a pyramidal truss core. It is found that the formation of the 2-dimensional staggered nodes can effectively make the X-type structure more resistant to inelastic and plastic buckling under both compression and shear loading than the pyramidal lattice truss. Obtained results show that the compressive and shear peak strengths of the X-type lattice structure are about 30% higher than those of the pyramidal lattice truss having the same relative density. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2006CB601202), the National Natural Science Foundation of China (Grant Nos. 10632060,10825210), the National “111” Project of China (Grant No. B06024) and the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA03Z519)  相似文献   

11.
This paper proposes a new method that reconstructs the information of specimen by using random phase shift step in digital holographic microscopy (DHM). The principles of the method are described and discussed in detail. In practical experiment, because the phase shifter is neither perfectly linear nor calibrated, digital holograms with inaccurate phase shift step are recorded by the charge-coupled device (CCD). The phase could be accurately reconstructed from the recorded digital holograms by using the random phase-shifting algorithm, which makes up for reconstructed phase error caused by ordinary phase-shifting algorithm. The phase aberration compensation is also discussed. In order to verify the flexibility of the proposed method, numerical simulation of random phase-shifting DHM was carried out. The simulation results illustrated that the presented method is effective when the phase shift step is unknown or random in DHM. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2004CB619304), the National Natural Science Foundation of China (Grant Nos. 10625209, 10472050, 10732080), the Project of Beijing Natural Sciences Foundation (Grant No. 3072007), the Program for New Century Excellent Talents (NCET) in Chinese University Ministry of Education (Grant No. NCET-05-0059), and the Opening Funds from the State Key Laboratory of Explosion Science and Technology  相似文献   

12.
An optimal refractive index profile of pure silica core optical fiber (PSCF) was designed, in combination with the characters of the modified chemical vapor deposition (MCVD) process. Techniques of preform fabrication by a new furnace round heating MCVD process and fiber drawing process were reviewed. Difficulties in doping fluorine in silica, widening the depressed-index cladding and maintaining the index of fiber core were discussed. Methods used to overcome these difficulties were given at the same time. Additionally, the optimal refractive index profiles of PSCF were presented. Supported by the Hi-Tech Research and Development Program of China (Grant No. 2002AA312190), National Natural Science Foundation of China (Grant No. 60477017), Program for the New Century Excellent Talents in University (Grant No. NCET-06-0076), Beijing Natural Science Foundation (Grant No. 4052023) and the Beijing Jiaotong University Foundation (Grant No. 2006XM003)  相似文献   

13.
Open celled metal foams fabricated through the route of metal sintering are a new class of material that offers novel mechanical and acoustic properties. The metal sintering approach offers a cost-effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. The mechanical properties of open-celled steel alloy (FeCrAlY) foams have been characterized in previous studies, with focus placed on the influence of processing defects on stiffness and strength. In this work, the low-Reynolds number fluid properties of FeCrAlY foams were investigated both theoretically and experimentally. Specifically, the static flow resistance of the sintered foams important for heat transfer, filtration and sound absorption was modeled based on a cylinder and a sphere arranged in a periodic lattice at general incidence to the flow. Experimental measurements were subsequently carried out to validate theoretical predictions, with good agreement achieved. Supported by the National Basic Research Program of China (Grant Nos. 2006CB601202, 2006CB601204), the National 111 Project of China (Grant No. B06024), US Office of Naval Research (Grant No. N000140210117), the National Natural Science Foundation of China (Grant Nos. 10572111, 10632060), and the National Hi-Tech Research Development Program (Grant No. 2006AA03Z519)  相似文献   

14.
Optimal design is one of the most important issues in robots. Since the very beginning, the concepts of the Jacobian matrix, manipulability and condition number, which are used successfully in the field of serial robots, have been applied to parallel robots. Unlike serial robots, parallel robots are good for motion/force transmission. Their performance evaluation and design should be correspondingly different. This paper is an attempt to optimally design a novel spatial three-degree-of-freedom (3-DOF) parallel robot by using the concept of motion/force transmission. Accordingly, three indices are defined. The suggested indices are independent of any coordinate frame and could be applied to the analysis and design of a parallel robot whose singularities can be identified wholly by using the relative angle between the output and adjacent links, and by using the relative angle between the input and adjacent links. Supported by the National Natural Science Foundation of China (Grant No. 50775118), High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA04Z227), and National Basic Research Program of China (973 Program) (Grant No. 2007CB714000)  相似文献   

15.
The paper presents a practical dynamic security region (PDSR) based dynamic security risk assessment and optimization model for power transmission system. The cost of comprehensive security control and the influence of uncertainties of power injections are considered in the model of dynamic security risk assessment. The transient stability constraints and uncertainties of power injections can be considered easily by PDSR in form of hyper-box. A method to define and classify contingency set is presented, and a risk control optimization model is given which takes total dynamic insecurity risk as the objective function for a dominant contingency set. An optimal solution of dynamic insecurity risk is obtained by optimizing preventive and emergency control cost and contingency set decomposition. The effectiveness of this model has been proved by test results on the New England 10-genarator 39-bus system. Supported by the key research of the National Natural Science Foundation of China (Grant No. 50595413) and The National Basic Research Program of China (973 Program) (Grant No. 2004CB217904)  相似文献   

16.
The mechanical oscillatory behaviors of multiwall carbon nanotube oscillators in gaseous environment are investigated using the molecular dynamics method. The effects of ambient gas and temperature on intertube frictional force and oscillation frequency are analyzed. It is found that the intertube frictional force increases with the ambient gas density and temperature. Higher gas density and higher temperature cause a more rapid decay in the oscillation amplitude and an increase of the oscillation frequency. Compared to the vacuum environmental condition, the collision between gas atoms and the nanotube walls is a main ingredient leading to the increase of the energy dissipation. Gas damping may be the main reason for the failure of carbon nanotube oscillators working in gas environment. The ambient temperature also has an important effect on oscillations and low temperature is advantageous to sustain oscillations. Supported by the National Basic Research Program of China (“973”) (Grant No. 2006CB300404), the National Natural Science Foundation of China (Grant Nos. 50676019, 50775017), the Jiangsu Province Natural Science Foundation (Grant Nos. BK2006510, BK2007113), and the Research Funding for the Doctor Program from Chinese Educational Ministry (Grant No. 20050286019)  相似文献   

17.
A new transient stability margin is proposed based on a new expression of dynamic security region (DSR) which is developed from the existing expression of DSR. Applications of the DSR based transient stability margin to contingency ranking and screening are discussed. Simulations in the 10-machine 39-bus New England system are performed to show the effectiveness of the proposed DSR based transient stability margin. Supported by Chinese National Basic Research Program (Grant No. 2004CB217900), the National Natural Science Foundation of China (Grant Nos. 50525721, 50595411, 50707035) and China Postdoctoral Science Foundation (Grant No. 20060400518)  相似文献   

18.
The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered. By neglecting the interface energy, interface kinetics and buoyancy effects in the system, we obtaine the steady-state solution for the case of the large Schmidt number, in terms of the multiple variable expansion method. The changes of the temperature and concentration fields, the morphology of the interface, the normalization parameter and the Peclet number of the system induced by uniform external flow are derived. The results show that, compared with the system of dendritic growth from undercooled pure melt, the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface. Nevertheless, the shape of the interface still remains nearly a paraboloid. Supported by the National Basic Research Program of China (Grant No. 2006CB605205) and the National Natural Science Foundation of China (Grant No. 10672019)  相似文献   

19.
Open-celled metal foams fabricated through metal sintering offers novel mechanical, thermal and acoustic properties. Previously, polymer foams were used as a means of absorbing acoustic energy. However, the structural applications of these foams are inherently limited. The metal sintering approach provides a cost-effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. The low Reynolds number fluid properties of sintered steel alloy (FeCrAlY) foams were investigated in a previous study. The static flow resistance of the foams was modeled based on a cylinder and a sphere arranged in a periodic lattice at general incidence to the flow, with the resulting predictions correlating well to measurements. The application of the flow resistance in an acoustic model is the primary focus of the present study. The predictions for the static flow resistance of the sintered foams are first used in a theoretical model to determine the characteristic impedances, as well as the propagation constants of the foams. Subsequently, the predicted acoustic performance of the foams is compared to experimental results. Finally, the design space for a simple acoustic absorber incorporating sintered foams is examined, with the effects of absorber size, foam selection, and foam spacing explored. Supported by the National Basic Research Program of China (Grant Nos. 2006CB601202, 2006CB601204), the National 111 Project of China (Grant No. B06024), US Office of Naval Research (Grant No. N000140210117), the National Natural Science Foundation of China (Grant Nos. 10572111, 10632060), and the National H-Tech Research and Development Program of China (Grant No. 2006AA03Z519)  相似文献   

20.
Molecular dynamics (MD) simulations were performed to do the test of sin-gle-walled carbon nanotubes (SWCNT) under tensile loading with the use of Bren-ner potential to describe the interactions of atoms in SWCNTs. The Young’s modulus and tensile strength for SWCNTs were calculated and the values found are 4.2 TPa and 1.40―1.77 TPa, respectively. During the simulation, it was found that if the SWCNTs are unloaded prior to the maximum stress, the stress-strain curve for unloading process overlaps with the loading one, showing that the SWCNT’s de-formation up to its fracture point is completely elastic. The MD simulation also demonstrates the fracture process for several types of SWCNT and the breaking mechanisms for SWCNTs were analyzed based on the energy and structure be-havior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号