首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
活性炭超级电容器电极的电化学行为   总被引:1,自引:0,他引:1  
张伟  张莹 《电池工业》2010,15(1):22-26
以商用活性炭为电极材料,组装成对称型超级电容器。采用恒流充放电、循环伏安、交流阻抗等方法研究正负极的电化学行为。结果发现,正极电位范围占电容器总电压的61%以上,电阻占电容器总电阻的66%以上;在不同扫描速率下,负极电容特性稳定,比容量达到了264.2F/g,而正极则仅为114.3F/g;在低频区负极出现"电荷饱和",负极中储存的电容量可得到利用,而正极未出现"电荷饱和"现象;负极电极过程为阻挡层扩散控制,而正极为有限层扩散控制;负极自放电速率大于正极,超级电容器自放电速率由负极决定。  相似文献   

2.
张莹  刘开宇  王洪恩  白蓝  温晶 《电池工业》2007,12(6):379-383
采用液相法制得菊花状形貌的纳米MnO2电极材料,并组装成对称型超级电容器。采用0.8V电压,在不同电流密度下分别对超级电容器进行了恒电流充放电测试,旨在研究正负极对超级电容器充放电性能的影响。结果发现,正负极的电荷储存机制不同,其中正极对电容器电压的影响起主要作用,在0.43~0.49V(vsHg/HgO)以及0.40~0.33V(vsHg/HgO)范围内发生了电化学反应,而负极则表现稳定。随着电流密度的增大,正极电压范围从0.54V下降到0.52V;负极电压范围则从0.26V增加到0.28V;正、负极以及电容器电阻均有所下降,超级电容器从4.29Ω下降到2.80Ω,正极从0.94Ω下降到0.76Ω,负极从1.30Ω下降到0.97Ω。超级电容器及电极的自放电分两部分进行,在高电位范围内由紧密层电荷快速扩散的线性放电速率变化以及在低电位范围内由分散层扩散决定的慢速线性放电速率变化。  相似文献   

3.
于丹娜  张浩  张世超  曹高萍 《电池》2007,37(3):165-167
以活性炭为电极材料组装有机体系电化学双电层电容器(EDLC),探讨了正、负极质量比对有机体系EDLC电容性能的影响.在LiPF6/EC DMC电解液中,活性炭正极的比电容与负极相同,但工作电位窗口小于负极,放电比容量低于负极.当m(正极):m(负极)=1.8:1.0时,电容器可在0~3.0 V内稳定工作,比能量达36.8 Wh/kg,比正、负极质量相等的EDLC的比能量高48%.  相似文献   

4.
为了进一步提高超级电容器电极材料的比电容,同时保证其循环稳定性,采用快速电沉积法制备了 NiMnS/碳纤维复合材料.在弥补碳材料比电容低的缺点的同时,进一步提高了复合材料的性能,克服了传统碳基材料的局限,所制备的复合材料具有较宽的工作电压(-0.2~0.8 V)和高的比电容(1 A/g时比电容可以达到780 F/g)....  相似文献   

5.
活性炭电极对超级电容器性能的影响   总被引:1,自引:0,他引:1  
张莹  张伟  刘开宇 《电池工业》2009,14(2):93-96
介绍了以商用超级电容器活性炭为电极材料,组装成对称型超级电容器。采用恒流充放电、交流阻抗等方法研究了正负极的电化学行为。结果发现,随着电流密度的增加,正极电位范围占超级电容器总电压的61%以上,电阻占电容器总电阻的66%以上;在低频区负极出现“电荷饱和”,电极中储存的大部分电容量可得到利用,而正极未出现“电荷饱和”现象。  相似文献   

6.
AC/Li4Ti5O12混合电容器的性能研究   总被引:1,自引:0,他引:1  
采用固相法合成了Li4T15O12.用X射线衍射(XRD)表征了材料的粉末结构特征.将Li4Ti5O12用作超级电容器的负极.与活性炭(AC)正极组装成混合电容器,用循环伏安(CV)、电化学阻抗(EIS)和恒流充放电考察了其电化学性能,并在三电极体系下研究了Li4Ti5O12在混合电容器中的反应机理.结果表明,混合电容器中的赝电容来源于Li4Ti5O12的不完全反应.当以0.5 mA·cm-2的电流密度循环时.首次放电比容量为69.9 F·g-1,800次后比容量为61.2 F·g-1,并分析了容量衰减因素.  相似文献   

7.
螺环季铵盐电解质在超级电容器中的应用研究   总被引:1,自引:0,他引:1  
采用一种新型的四氟硼酸螺环季铵盐/丙腈非水溶液作超级电容器的电解液,与活性炭电极组装成模拟超级电容器,通过交流阻抗、循环伏安及恒流充放电等测试手段对其电化学性能进行了研究。结果表明,超级电容器电化学窗口可以达到4.7V,电容器的单正极比电容可达到469.94F/cm3,并且具有良好的电容特性、可逆性及循环特性。  相似文献   

8.
纳米TiO2掺杂活性炭极化电极的电化学特性研究   总被引:1,自引:0,他引:1  
文章研究了纳米TiO2掺杂活性炭(AC)复合物ACT(纳米TiO2掺杂活性炭的AC电极样品)作为超级电容器电极的电化学特性。实验结果表明, 对于具有n型半导体特性的TiO2掺杂AC,作为超级电容器正极材料时能够显著提高AC的储能能力,作为负极时却大大地降低了AC的储能能力。在超级电容器ACT电极中AC∶TiO2为6∶1时,其电极的比容量达到69.4 F·g-1,比纯AC电极的容量提高了约47 %。循环伏安扫描图表明该ACT电极的电化学行为依然为典型的双电层电容特性。掺杂前在350~750 ℃温度范围对纳米TiO2 进行处理有利于进一步提高ACT电极的储能容量。  相似文献   

9.
活性炭-烧结复合镍钴超级电容器   总被引:11,自引:4,他引:7  
程杰  李晓忠  曹高萍  沈涛  杨裕生 《电池》2005,35(3):166-168
以比电容达250F/g的活性炭作为负极,0.31 mm厚的超薄型烧结复合镍钴电极作为正极,组装了活性炭-烧结复合镍钴超级电容器,用恒流充放电和交流阻抗法研究了它的性能.比电容与正、负电极质量比密切相关,增加负极的比例,可提高比电容和比能量.以正、负电极质量之和为基准,最大比能量达16 Wk/kg、最大比功率达10 kW/kg.  相似文献   

10.
LiBOB-尿素离子液体在超级电容器中的应用   总被引:1,自引:0,他引:1  
合成双草酸基硼酸锂(LiBOB)-尿素离子液体新型电解质,并以高比表面的活性炭为电极材料,装配成模拟电容器,对其电容特性进行了系统研究.结果表明,该超级电容器的比电容达到92 F/g,工作电压可达2.0 V以上,循环充放电近2 000次后容量损失小于8%.离子液体在超级电容器中表现出良好的电化学兼容性,具有良好的热稳定性,是超级电容器非常有前景的新型电解质.  相似文献   

11.
以中间相沥青为前驱体,以KOH和CO2为活化剂,采用物理—化学联合工艺制备了高比表面积的超级电容器用活性炭电极材料;以所制备的活性炭为电极材料制备了2.7V/1500F聚合物超大容量电容器,并对其充放电特性、容量、内阻、循环性能、漏电流、安全性能进行了测定。实验结果表明:所制备的活性炭为电极材料制成的碳基超级电容器,其充放电曲线表现出良好的电容特性,实际容量可达1 670F,活性物质的克容量为110.6F/g,电容器内阻在6mΩ以下;在大电流放电条件下,电容器的能量密度可达5.96 Wh/kg,5 000次循环后容量无明显的衰减现象。过充、短路、挤压和针刺四项安全测试测试结果良好。  相似文献   

12.
采用原位聚合法制备了聚苯胺/活性炭复合材料(PANI/C),复合材料中聚苯胺的质量分数为46.4%.以1 mol/LH2SO4溶液为电解液,Nafion 117质子交换膜为隔膜,分别采用复合材料电极和活性炭电极为正负极组装了混合型电容器,并用循环伏安、交流阻抗、恒流充放电测试等方法考察了电容的性能.结果表明,该混合型电容器在0~1.35 V电势范围内电容性能良好.3.0 mA/cm2电流密度下,电容器比容量为83.1 F/g,比活性炭电容器提高82%,电容器的比能量可达21.0 Wh/kg,是活性炭电容器的3倍以上.1 000次充放电循环后,电容器比容量保持在初始比容量的89.1%.  相似文献   

13.
以钛板为集流体,研究了在非对称超级电容器碳负极材料中添加不同石墨导电材料对其性能的影响;结果表明:添加的石墨导电材料降低了等效串联电阻,通过抑制析氢添加剂有效抑制了碳负极H2的析出,使碳电极活性物质的比容量达到130 F/g。  相似文献   

14.
采用低温固相法制备了超级电容器用二氧化锰(MnO2)/活性炭(AC)复合材料,用XRD、SEM、循环伏安(CV)和恒流充放电测试研究了掺杂量对产物性能的影响。产物的粒径为1~10μm。AC的最佳掺杂量为7%,在0~0.8 V充放电,该样品的100 mA/g首次放电比电容为375 F/g,第100次和1 000次300 mA/g循环的放电比电容分别为99 F/g和74 F/g。  相似文献   

15.
以葛根为原料,通过K2CO3/KOH混合碱活化方法制备了高比表面积电极材料活性炭,采用氮气吸-脱附、X射线衍射光谱法(XRD)、恒流充放电以及循环伏安法考察活性炭样品的表面性质、孔结构以及电化学性能,进一步考察了碱活化浓度、活化温度对活性炭的比表面积、孔结构和电化学性能影响。结果表明:活性炭的最佳碱炭比为3∶1,活化温度为800℃,比表面积最高达2700 m2/g,在6 mol/L的KOH电解液中,超级电容器法拉第比电容为325 F/g,具有很好的电化学性能。  相似文献   

16.
苎麻基活性炭纤维超级电容器材料的制备   总被引:3,自引:0,他引:3  
以天然植物纤维苎麻为原料.采用ZnCl_2化学活化法,制备不同活化温度下的活性炭纤维,并组装成超级电容器,通过低温氮气吸附测定了活性炭纤维的BET比表面积和孔结构,发现比表面积随活化温度的升高而减小.电化学测试结果表明经过650℃活化的活性炭纤维超级电容器在50 mA/g恒流放电时比电容达253 F/g,并且具有较低的内阻和较好的功率特性以及较长的循环寿命.  相似文献   

17.
超级电容器用活性炭的制备及性能   总被引:1,自引:0,他引:1  
以杏壳活性炭为原料,KOH为活化剂,制备了活性炭样品,并以1 mol/L LiClO4/PC溶液作电解液,组装成模拟电容器,进行电化学性能测试。活性炭的比电容随碱用量的增加而增高,最高达到161 F/g。比电容随比表面积的增加而升高,比表面积高于2 000 m2/g后,增加程度逐渐变小。  相似文献   

18.
赵家昌  陈思浩  解晶莹 《电源技术》2007,31(12):1000-1003
研究了硅溶胶模板法制备的作为超级电容器电极材料中孔炭的孔结构和电化学性能.中孔炭的平均孔径和比电容随硅溶胶/炭源(葡萄糖)比的增加而增大.提出了一种硅溶胶模板法与CO2物理活化法相结合的模板-物理活化法以提高中孔炭的BET表面积来提高中孔炭的比电容.采用恒流充放电和电化学阻抗谱研究了中孔炭的孔结构与倍率性能的关系,并与商品化微孔活性炭作了比较.结果表明平均孔径较大的中孔炭具有较好的倍率特性.模板-物理活化法制备的中孔炭具有高比电容和良好的倍率特性.  相似文献   

19.
岳淑芳  马兰  徐斌  初茉 《电池》2011,41(2):62-65
研究了商品粘胶基活性炭纤维毡直接用作超级电容器的电极,在6 mol/L KOH电解液中的电化学电容性能.活性炭纤维毡的BET比表面积为2 066 m2/g,含氮量为1.48%.高比表面积产生的双电层电容和表面氮原子准电容的作用,使活性炭纤维毡在电流为50 mA/g时的比电容达到194 F/g.由于纤维开放的孔结构和毡电...  相似文献   

20.
苏蓓 《电源技术》2022,46(2):173-176
分别以普通铝箔、腐蚀铝箔和微孔铝箔为集流体,以活性炭材料为电极片活性物质,研究不同的浆料涂布厚度及集流体种类对单体超级电容器内阻、比电容和比能量的影响。用交流阻抗谱、恒流充放电和循环伏安测试等进行电化学性能表征。实验结果表明,电极片的涂布厚度相同时,微孔铝箔的活性物质负载量最大,并且其内阻最小、比电容最大,说明微孔铝箔与活性物质表面的接触更为紧密;而对于同一种集流体,当涂布厚度为90μm时,组装的超级电容器的比电容最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号