首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al–Si alloys with silicon content more than 13 % are termed as hypereutectic alloys. In recent years, these alloys have drawn the attention of researchers due to their ability to replace cast iron parts in the transportation industry. The properties of the hypereutectic alloy are greatly dependent on the morphology, size and distribution of primary silicon crystals in the alloy. Mechanical properties of the hypereutectic Al–Si alloy can be improved by the simultaneous refinement and modification of the primary and eutectic silicon and by controlling the solidification parameters. In this paper, the effect of solidification rate and melt treatment on the evolution of microstructure in hypereutectic Al–Si alloys are reviewed. Different types of primary silicon morphology and the conditions for its nucleation and growth are explained. The paper discusses the effect of refinement/modification treatments on the microstructure and properties of the hypereutectic Al-Si alloy. The importance and effect of processing variables and phosphorus refinement on the silicon morphology and wear properties of the alloy is highlighted.  相似文献   

2.
Melt-spun Al-3 wt pct Si with and without ternary additions of Na and Sr has been heat-treated above the Al-Si eutectic temperature in a differential scanning calorimeter to form a microstructure of Al-Si eutectic liquid droplets embedded in the α-Al matrix. During subsequent cooling in the calorimeter, the heterogeneous nucleation temperature for solidification of Si in contact with the surrounding Al matrix depends sensitively on the alloy purity, with a nucleation undercooling which increases with increasing alloy purity from 9 to 63 K below the Al-Si eutectic temperature. These results are consistent with Southin’s hypothesis that low levels of trace P impurities are effective in catalyzing Si nucleation in contact with the surrounding Al matrix. With a low Al purity alloy, 0.1 wt pct Na addition increases the Si nucleation undercooling from 9 to 50 K, 0.15 wt pct Sr addition does not affect the Si nucleation temperature, and 0.3 wt pct Sr addition decreases the Si nucleation undercooling from 9 to 3 to 4 K. The solidified microstructure of the liquid Al-Si eutectic droplets embedded in the Al matrix depends on the Si nucleation undercooling. With low Si nucleation undercooling, each Al-Si eutectic liquid droplet solidifies to form one faceted Si particle; however, with high Si nucleation undercooling, each Al-Si eutectic droplet solidifies to form a large number of nonfaceted Si particles embedded in Al. Formerly with the Oxford Centre for Advanced Materials and Composites, Department of Materials, Oxford University  相似文献   

3.
In-situ neutron diffraction and thermal analysis techniques were used simultaneously to evaluate the kinetics of the nonequilibrium solidification process of an Al-19 pct Si binary alloy. Feasibility studies concerning the application of neutron diffraction for advanced solidification analysis were undertaken to explore its potential for high resolution phase analysis coupled with fraction solid/liquid analysis of phase constituents. Neutron diffraction patterns were collected in a stepwise mode during solidification between 983 K and 793 K (710 °C and 520 °C). The variation of intensity of the diffraction peaks was analyzed and compared to the results of conventional cooling curve analysis. Neutron diffraction was capable of detecting nucleation of the Si phase (primary and eutectic), as well as the Al phase during Al-Si eutectic nucleation. Moreover, neutron diffraction indicated the possibility of detecting the presence of Si peaks at near liquidus temperature and premature nucleation of α-Al prior to Al-Si eutectic temperature. The solid and liquid volume fractions were determined based on the change of intensity of neutron diffraction peaks over the solidification interval. Overall, the volume fraction determined was in good agreement with the results of the cooling curve thermal analysis, as well as calculations using the FactSage software. The potential of neutron diffraction for high resolution melt analysis required for advanced studies of grain refining, eutectic modification, etc. was illustrated. This study will help us better understand the solidification mechanism of Al-Si alloys used for various casting component applications.  相似文献   

4.
A new model for the simulation of microstructure evolution of multicomponent alloys with equiaxed dendritic and eutectic morphology has been developed based upon the mixture-theory model (continuum approach). The model can account for the effects of natural convection, solidification contraction, solidification kinetics, and grain movement on the solidification microstructure evolution. The novelty of this model is that it includes tracking of equiaxed dendritic and eutectic grains movement during solidification and, thus, eliminates the assumption of uniform grain size in a given volume element, which is standard in current advanced solidification models. This is achieved through the implementation of continuous nucleation laws and of a grain distribution function over the volume element, in addition to solid transport simulation through the energy equation. To track grain movement, rules of tracking grain movement are proposed. The model deals with nonequilibrium solidification and describes competitive growth of primary and eutectic phases. The proposed model was implemented to simulate the microstructural evolution of an Al-Si-Mg alloy (A356) during solidification. An equivalent pseudobinary approach was developed to calculate the solidification parameters required in modeling of this multicomponent alloy. Computational experiments with the new model have demonstrated that significant variations in the volumetric grain density exist throughout the casting because of natural convection. These differences can be traced with the proposed grain tracking technique but not with current solidification models.  相似文献   

5.
6.
The solidification behavior, micro structure and silicon twinning of Al-10 Si alloys with Yb addition were investigated by thermal analysis, optical microscopy, X-ray diffraction. scanning electron microscopy, and transmission electron microscopy. The results indicate that the nucleation temperature, minimum temperature, and growth temperature of Al-lOSi alloys decrease with increasing Yb content. The cooling curves of the Yb-modified alloys exhibit marked recalescence. The recalescence of the modified alloy peaks at 2.3 ℃ when the Yb content is 0.7 wt%. The 3 D morphologies of eutectic Si in Yb-modified alloys change from a coarse plate-like structure to a honeycomb structure with many fine fibrous structures.The Al-Si-Yb intermetallic compound is observed in the 1.0 wt% Yb-modified alloy. Meanwhile, XRD analysis and TEM results indicate that the average twin spacing in the Yb-modified alloys is 18-46.2 nm.The average twin spacing of eutectic Si decreases with increasing Yb content. When the Yb content in the modified alloy is increased to 0.7 wt%, the average twin spacing value of eutectic Si reaches to 18 nm,which promotes the formation of twins and refinement of eutectic Si.  相似文献   

7.
Here we present a contribution to the microstructure based design of new steel alloys by a careful investigation of multiphase microstructure solidification in a convective field. To this end we present an extension of the quantitative phase‐field model proposed in [1] to investigate the influence of hydrodynamic convection on the growth of eutectic/peritectic alloys. We study directional solidification of a eutectic alloy under the influence of a shear flow ahead of the solidifying front. We mainly investigate the growth of a eutectic lamellar structure. We show that the imposed flow tilts the whole lamellar structure away from the flow direction. Moreover, we show that forced flow alters the growth morphology of Fe‐Ni peritectic alloys, having a strong influence on the nucleation of the peritectic phase. Based on these investigations, a scale relation between the strength of flow and the solid volume fraction is derived. Further we propose an application of these models as an alternative approach to study heterogeneous nucleation kinetics in the solidification of peritectic materials systems.  相似文献   

8.
The effects of different levels of strontium on nucleation and growth of the eutectic in a commercial hypoeutectic Al-Si foundry alloy have been investigated by optical microscopy and electron backscattering diffraction (EBSD) mapping by scanning electron microscopy (SEM). The microstructural evolution of each specimen during solidification was studied by a quenching technique at different temperatures and Sr contents. By comparing the orientation of the aluminum in the eutectic to that of the surrounding primary aluminum dendrites by EBSD, the eutectic formation mechanism could be determined. The results of these studies show that the eutectic nucleation mode, and subsequent growth mode, is strongly dependent on Sr level. Three distinctly different eutectic growth modes were found, in isolation or sometimes together, but different for each Sr content. At very low Sr contents, the eutectic nucleated and grew from the primary phase. Increasing the Sr level to between 70 and 110 ppm resulted in nucleation of independent eutectic grains with no relation to the primary dendrites. At a Sr level of 500 ppm, the eutectic again nucleated on and grew from the primary phase while a well-modified eutectic structure was still present. A slight dependency of eutectic growth radially from the mold wall opposite the thermal gradient was observed in all specimens in the early stages of eutectic solidification.  相似文献   

9.
Direct chill (DC) casting of an Al-17.5Si-4.5Cu-1Zn-0.7Mg-0.5Ni alloy with minor additions of Zr, V and Ti was performed and the effect of phosphorus modification on the solidification microstructure and mechanical properties were investigated. The results show that the addition of phosphorus refines the primary Si crystals remarkably but coarsens the eutectic Si in the DC cast billets. In the samples taken in 1/2 radius region of the billets of 100 mm in diameter, the average size of the primary Si particles in the unmodified alloy is 38 μm, while that in the modified alloys range from 13 to 26 μm, depending on the melt treatment time. The AlP particles as heterogeneous nucleation sites for the primary Si crystals were observed in the center of the primary Si particles. In the modified alloy, the achieved ultimate tensile strength is 320MPa and 433MPa respectively in the as-cast state and T6 state. The size of the primary Si particles is critical for the improvement of the mechanical properties of the alloy.  相似文献   

10.
Thermal analysis of LM29 alloy and Ce added LM29 alloys was carried out. The effect of cerium addition on solidification parameters and microstructural features of hypereutectic Al-Si (LM29) alloy was studied using Newtonian analysis technique. Thermal analysis parameters such as primary and eutectic phase nucleation and solidus temperatures were determined. The addition of Ce to LM29 alloy decreased the nucleation temperature of primary silicon and eutectic silicon. The microstructural examination of Ce added LM29 alloys revealed the presence of a polyhedral shaped Al–Si–Ce compound that might have caused the refinement of primary and eutectic silicon. The dendrite coherency point temperature of LM29 alloy was found to be suppressed on addition of Ce.  相似文献   

11.
A modified cellular automaton (MCA) model was developed and applied to simulate the evolution of solidification microstructures of both eutectic and hypoeutectic Al-Si alloys. The present MCA model considers the equilibrium and metastable equilibrium solidification processes in a multiphase system. It accounts for the aspects including the nucleation of a new phase, the growth of primary α dendrites and two eutectic solid phases from a single liquid phase, as well as the coupling between the phase transformation and solute redistribution in liquid. The effects of alloy composition and eutectic undercooling on eutectic morphology and eutectic nucleation mode were investigated. The simulated results were compared with those obtained experimentally.  相似文献   

12.
Hypereutectic Al-18 wt pct Si alloy is widely used in automotive industry as a wear-resistant alloy for engine components. However, in the last few years, this traditional composition is being considered for processing by different rapid solidification methods. Positive points include its low thermal expansion and uniform distribution of surface oxides. Nevertheless, the microstructural aspects of Al-Si powders of 18 wt pct Si are still need to be addressed, such as, the eutectic Si morphology, size, and distribution generated by different process conditions during rapid solidification. Based on a detailed quantitative analysis of the microstructures of rapid solidified Al-18 wt pct Si in this work, solidification conditions that yield specific Si morphologies, Si spacing, and thermal cooling conditions are outlined. The focus is determining the solidification conditions that will yield a specified shape of eutectic Si. It is shown that Si morphology is dependent on a combination of growth velocity (based on modified JH model) and temperature gradient. Furthermore, the highest hardness is achieved with globular morphologies of Si. The processing conditions required to achieve these properties are outlined.  相似文献   

13.
Al-Si eutectic growth has been studied in-situ for the first time using X-ray video microscopy during directional solidification (DS) in unmodified and Sr-modified Al-Si-Cu alloys. In the unmodified alloys, Si is found to grow predominantly with needle-like tip morphologies, leading a highly irregular progressing eutectic interface with subsequent nucleation and growth of Al from the Si surfaces. In the Sr-modified alloys, the eutectic reaction is strongly suppressed, occurring with low nucleation frequency at undercoolings in the range 10 K to 18 K. In order to transport Cu rejected at the eutectic front back into the melt, the modified eutectic colonies attain meso-scale interface perturbations that eventually evolve into equiaxed composite-structure cells. The eutectic front also attains short-range microscale interface perturbations consistent with the characteristics of a fibrous Si growth. Evidence was found in support of Si nucleation occurring on potent particles suspended in the melt. Yet, both with Sr-modified and unmodified alloys, Si precipitation alone was not sufficient to facilitate the eutectic reaction, which apparently required additional undercooling for Al to form at the Si-particle interfaces.  相似文献   

14.
Solidification and spangle formation of hot-dip-galvanized zinc coatings   总被引:4,自引:0,他引:4  
Solidification of hot dip coatings was studied regarding thermal conditions. Optical phenomena occurring at the liquid zinc surface were documented and the solid zinc surface was characterized in respect to optical and microscopic appearance, distribution of Pb and Al, crystal orientation, and topography. Resulting from these observations, a solidification model can be derived: zinc nucleation occurs at the steel/zinc interface. Due to thermal conditions in the slightly undercooled liquid zinc film, solidification occurs by rapid sideways dendritic expansion of the nucleated grains along the steel/zinc interface. Dendritic growth is controlled by interaction of crystal orientation of the nucleated zinc grain and thermal conditions in the undercooled layer. This leads to formation of different shaped grains with thicker and thinner sectors. The mechanism of sideways expansion continues until the entire interface is covered with dendritic zinc grains. Even though the zinc outer surface is still a liquid phase, final spangle size, as well as surface appearance and shape of the grains, is already determined at that early stage of solidification. Further growth only leads to a thickening of the solid layer; however, its relief remains almost unchanged. Thickening occurs relatively slowly due to the fact that marginal heat flow toward the surface now represents the limiting factor. Growth of the solid zinc layer results in continuous enrichment of Pb and Al in the residual liquid. Then, outer surface solidification starts as segments of single grains emerge. Distribution of the enriched residual melt in between the already solid areas depends on the relief of the solid layer. Finally, eutectic Zn-Pb reaction with precipitation of Pb particles takes place, which defines the dull appearance of these regions. Solidification for “lead-free” coatings is essentially the same, except that the final eutectic Zn-Pb reaction is missing. Additional investigations of dendritic secondary arm spacing indicate that Pb does not act by suppressing zinc nucleation. Pronounced dendritic growth is proposed to be favored by a change in interfacial energy. The new solidification model is applicable for a wide range of processing conditions and explains the origin of the typical spangle structure.  相似文献   

15.
16.
Al-10.98 pct Si-4.9 pct Ni ternary eutectic alloy was unidirectionally solidified at growth rates from 1.39μm/sec to 6.95μm/sec. Binary Al-Ni and Al-Si eutectics prepared from the same purity metals were also solidified under similar conditions to characterize the growth conditions under the conditions of present study. NiAl3 phase appeared as fibers in the binary Al-Ni eutectic and silicon appeared as irregular plates in the binary Al-Si eutectic. However, in the ternary Al-Si-Ni eutectic alloy both NiAl3 and silicon phases appeared as irregular plates dispersed in α-Al phase, without any regular repctitive arrangement. The size and spacing of NiAl3 and Si platelets in cone shaped colonies decreased with an increase in the growth rate of the ternary eutectic. Examination of specimen quenched during unidirectional solidification indicated that the ternary eutectic grows with a non-planar interface with both Si and NiAl3 phases protruding into the liquid. It is concluded that it will be difficult to grow regular ternary eutectic structures even if only one phase has a high entropy of melting. The tensile strength and modulus of unidirectionally solidified Al-Si-Ni eutectic was lower than the chill cast alloys of the same composition, and decreased with a decrease in growth rate. Tensile modulus and strength of ternary Al-Si-Ni eutectic alloys was greater than binary Al-Si eutectic alloy under similar growth conditions, both in the chill cast and in unidirectionally solidified conditions.  相似文献   

17.
In the present study, Ca, Ni, V, and Zn were added to a high purity binary Al-7wt pct Si and commercial purity A356 foundry alloy in the nominal range of 50 to 600 ppm in order to study their effect on the solidification path and the resultant microstructure. Thermal analysis was used to assess nucleation and growth of the various phases. It was found that Ca and Ni additions suppress characteristic temperatures associated with nucleation and growth of the eutectic by up to 4 and 1.5 K, respectively. Additionally, Ca was observed to modify the eutectic Si and a concentration as low as 39 ppm Ca was sufficient to precipitate the geometrically unfavored polyhedral Al2Si2Ca phase. Furthermore, Ni addition resulted in the formation of two intermetallic phases when the Ni concentration exceeded 300 ppm. These phases have been quantified as Al3Ni and Al9FeNi by SEM-EDS. V and Zn had no apparent effect on the cooling curve and the microstructure. Even though it could be shown that V accumulates preferably in β-Al5FeSi particles, V concentrations of 600 ppm were too low to have any influence on the phase’s morphology.  相似文献   

18.
在高温度梯度真空定向凝固炉中,采用螺旋选晶法通过3种不同铸型温度分别制备了[001]取向的DD6单晶高温合金叶片,利用光学显微镜和扫描电镜观察了不同工艺条件下合金的铸态组织,研究了铸型温度对单晶高温合金凝固组织的影响。结果表明,随着铸型温度的升高,合金的一次枝晶间距和二次枝晶间距变小,合金元素的偏析程度降低,枝晶干和枝晶间的铸态γ′相尺寸减小,共晶的尺寸和含量稍有减小,显微疏松的尺寸和体积分数稍有减小。  相似文献   

19.
In the present study, Al?C20Si alloy has been modified by Cu?C13P master alloy to obtain Al?C20Si?C0.1P alloy. The wear properties of Al?C20Si?C0.1P alloy have been investigated and compared with that of Al?C20Si alloy. The microstructure of Al?C20Si?C0.1P alloy consisted of primary and eutectic silicon distributed in the Al matrix. The size of primary Si is much smaller than that observed in Al?C20Si alloy. Wear tests have been conducted over a wide range of loads and sliding velocities. It has been observed that the wear rates of Al?C20Si?C0.1P alloy are lower than that of Al?C20Si alloy. The coefficient of friction is more or less constant in both the alloys but is low in Al?C20Si?C0.1P alloy. The better wear resistance of Al?C20Si?C0.1P alloy is discussed in the light of its modified microstructure evolved during solidification.  相似文献   

20.
In the present paper, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to examine the effects of a Sr-Y composite modifier on the microstructure of A356 alloy. After adding Y to A356, YAl 3 compounds formed, and the size of the α (Al) crystal nucleus increased. The degree of supercooling caused by Sr-Y composite modifier was higher than Sr modification by 2.7 °C, leading to an increased nucleation rate. This increase in supercooling temperature was favorable to the refinement of eutectic structure of the alloy and its eutectic reaction was delayed to the maximum extent. The Si phase in the as-cast Sr-Y composite-modified A356 alloy was either granular or flaky. No large flakes of eutectic Si were found, and the modification effects were completely comparable with those obtained using a lone Sr modifier. After T6 heat treatment, most of the eutectic Si showed a grain-like shape with smaller grains. No eutectic Si with long-strip shapes, significant enhancements in the particle roundness and evenness of the Si crystals, and increased globosity were observed. Both the roundness and evenness of the grained Si crystals were enhanced, and the amount of globular eutectic Si available increased, these findings showed that excellent modification effects were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号