首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
黄福祥  王新华  王万军 《钢铁》2012,47(4):69-73
 采用化学侵蚀、彩色金相和电子探针(EPMA)等方法对AISI304奥氏体不锈钢连铸方坯凝固组织及其残留铁素体的形貌、化学组成等特征进行了分析,并采用DICTRA软件对铁素体向奥氏体的扩散转变进行了模拟研究,结果表明AISI304不锈钢铸坯表层树枝晶区的二次枝晶间距为12~20μm,富Cr贫Ni的残留铁素体呈骨骼状分布;铸坯中心等轴晶区的残留铁素体为蠕虫状分布,中心等轴晶区的残留铁素体富Cr贫Ni的同时富Si贫Mn,且其富Cr贫Ni的程度比柱状晶区的残留铁素体轻。钢液成分和先析铁素体向奥氏体扩散转变时间、距离是影响残留铁素体化学组成的主要因素。  相似文献   

2.
High-angle grain-boundary spacing in deformed austenite is analyzed using Ni-30Fe alloy to explain the change of ferrite grain size by severe plastic deformation (SPD) of austenite in low carbon steel. It is suggested that constant high-angle grain-boundary spacing in deformed austenite resulting from dynamic recrystallization (DRX) or geometric DRX is responsible for the limit of ferrite grain refinement over a certain level of plastic deformation of austenite.  相似文献   

3.
We have evaluated controlled decarburization as a method for probing the effect of alloying elements on ferrite growth from austenite. The technique permits the exploration of longer-time ferrite layer growth; it minimizes the effects of interface structure on ferrite growth; and it permits the isolation of the effects of temperature and alloying element concentration on ferrite/austenite interface motion. The study of the decarburization of initially homogeneous Fe-C-Ni alloys was complemented by experiments using specimens with a controlled nickel concentration gradient. Although the decarburization method yields consistent results at longer times, it is found to be less appropriate for the study of initial ferrite growth. Nucleation in the gas/solid interface region, coupled with uncertainties about the precise time of decarburization, leads to large relative errors at the earliest times. For these reasons, the method is considered a valuable complement to studies based on precipitation boundary conditions. This article is based on a presentation given in the symposium “The Effects of Alloying Elements on the Gamma to Alpha Transformation in Steels,” October 6, 2002, at the TMS Fall Meeting in Columbus, Ohio, under the auspices of the McMaster Centre for Steel Research and the TMS-ASM Phase Transformations Committee.  相似文献   

4.
为了确定薄带连铸AISI304不锈钢凝固过程中残留铁素体的生成及转变行为,采用彩色金相、电解侵蚀、电子背散射衍射分析技术及X射线衍射分析等研究手段对双辊薄带连铸AISI304不锈钢凝固组织及残留铁素体特征进行了研究.结果表明AISI304不锈钢薄带的凝固组织由表层胞状晶区、中间柱状晶区和中心等轴晶区三部分组成.薄带表层胞状晶区内残留铁素体呈棒状,柱状晶区的残留铁素体形态为鱼骨状,中心等轴晶区的残留铁素体呈弯曲的树枝状;薄带的表层胞状晶区残留铁素体的质量分数为4.6%~6.6%,柱状晶区内的残留铁素体质量分数为3.6%~3.7%,中心等轴晶区内的残留铁素体质量分数为11.27%~11.34%;残留铁素体沿着厚度方向呈现"W"状分布.   相似文献   

5.
The phases which are present within the dendritic core region during the solidification of AISI type M2 high speed steel (6 W, 5 Mo, 4 Cr, 2 V) were studied and characterized by metallography and quantitative microprobe analysis. A series of samples were quenched from various temperatures during solidification, “freezing in” the different solidification phases. The first phase observed to solidify in M2 is ferrite which contains very little carbon. As the solidification process continues, most of the liquid surrounding the ferrite transforms to austenite by virtue of a peritectic reaction which initiates at 1330°C,(L + FA). The ferritic cores also transform at around 1330°C into an austenite plus car-bide aggregate. By the time the ingot cools to 1255°C, the carbides at the center of the dendrites dissolve completely, leaving an austenitic phase of uniform carbon and alloy content. At temperatures below the solidus, very fine carbides precipitate from the aus-tenite. No eutectoid decomposition by products such as those commonly observed in Tl tool steel were observed in these specimens nor in samples from a commercial ingot. JAMES McLAUGHLIN, formerly Graduate Assistant at Lehigh University  相似文献   

6.
The directional solidification technique was applied in order to investigate the complicated solidification sequence in a commercial austenitic stainless steel which was known to yield a primary precipitation of § ferrite when cast into a 5 tons ingot. Three stages of solidification were found. The first precipitation of § ferrite was interrupted by precipitation of austenite and at the end of the solidification there was a transition back to precipitation of § ferrite. The competition between the first two stages is affected by the cooling rate and the nitrogen content. The precipitation of austenite from the melt results in the usual coring whereas ô ferrite forms with a very homogeneous composition, presumably due to rapid diffusion in this phase. On cooling austenite forms from the § ferrite and this reaction also results in coring, presumably due to rapid diffusion in § ferrite.  相似文献   

7.
钱海帆  张宇光  王炜  张建平 《钢铁》2012,47(9):57-62,78
为了研究Fe-C-Mn-A1系TRIP钢两相区奥氏体化过程中合金元素在奥氏体和铁素体中的分布,利用热膨胀仪、金相显微镜、电子探针等仪器,在对TRIP钢两相区奥氏体化过程进行热力学与动力学分析的基础上,建立了两相区奥氏体化过程的扩散模型,采用显式有限体积法对800℃与840℃的奥氏体化过程进行了数值求解.模拟结果表明:奥氏体转变初期受C元素在奥氏体中的扩散控制达到亚平衡,奥氏体转变速率较快;此时A1元素在奥氏体与铁素体界面处的浓度差较显著,Mn元素在奥氏体与铁素体界面处的浓度差不显著.奥氏体转变后期受Mn元素在铁素体内的扩散控制,转变速率较慢;此时A1元素在铁素体内已大量富集,Mn元素在奥氏体与铁索体界面处有较显著的浓度差.  相似文献   

8.
 The microstructures of austenitic stainless steel strip were studied using color metallographic method and electron probe micro analysis (EPMA). In the cast strips, there are three kinds of solidification structures: fine cellular dendrite in the surface layer, equiaxed grains in the center and fine dendrite between them. The solidification mode in the surface layer is the primary austenite AF mode because of extremely high cooling rate, with the retained ferrite located around the primary cellular austenite. In the fine dendrite zone, the solidification mode of molten stainless steel changes to FA mode and the residual ferrite with fish-bone morphology is located at the core of the dendrite. The retained ferrite of equiaxed grains in the center is located in the center of broken primary ferrite dendrite with vermicular morphology.  相似文献   

9.
《钢铁冶炼》2013,40(5):404-411
Abstract

In an unidirectional solidification experiment, an 8 kg stainless steel ingot with the composition 0·25%C, 17%Cr, and 1%Mn was solidified under continuous casting conditions. The dwell time of primary cooling was varied, followed by secondary spray cooling. Metallographic investigation, heat transfer, and segregation were carried out to study the solidification mechanism. The partition ratio of the elements present in ferrite and in austenite (martensite) was determined. It was indicated that the solidification follows: L → L + δ → L + δ + γδ + γ + carbides. Under high cooling rates γ austenite solidifies as a leading phase. The beginning of spray cooling has the main effect in controlling the obtained microstructures. Carbide thickening is observed in the rapidly cooled zone between the ferrite and the martensitic matrix. Tempered martensite increases by lowering the cooling rate, which gives more time for carbide dissolution and for carbon to diffuse into the ferrite, eventually increasing the austenite (martensite) fraction in the final matrix at the expense of ferrite.  相似文献   

10.
Nonmetallic inclusions in low-alloy steel welds have an important effect on the microstructure and properties of weld deposits. This work is an attempt at understanding the factors controlling the spatial distribution of such inclusions, with particular emphasis on the uniformity of the distribution and the effect of solidification mode during manual-metal-arc welding. The solidification mode has been controlled by using unusual combinations of base plates and experimental electrodes. It is found that the first phase to solidify (in the form of columnar grains) is delta-ferrite (δ) when a medium carbon electrode is deposited onto a low carbon substrate, but that it is austenite (γ) when a low carbon electrode is deposited onto a high carbon substrate. Relatively large inclusions have been found to position themselves preferentially, during solidification, to the columnar grain boundaries of the first phase to solidify, whether this is 8-ferrite or austenite. The results can be understood qualitatively in terms of a surface tension driven Marangoni effect, or in terms of the pushing of solid inclusions by the solidification front. Both mechanisms drive the larger inclusions into cusps in the interface while smaller ones are passively trapped. The implications of the observed nonuniform distribution of inclusions are more severe for solidification with austenite as the primary phase, since the larger inclusions are in that case located in the weakest region of the weld where they also do not contribute to the intragranular nucleation of acicular ferrite.  相似文献   

11.
The effects of chemical compositions,especially silicon and chromium contents,on the complete decarburization behaviors of steels in atmosphere of 2 vol.% O_2 and 98vol.%N_2 were investigated by using a simultaneous thermal analyzer.Complete decarburization was observed at both 750 and 800 ℃ for 60Si2 Mn A steel,while 750 ℃ only for 92 A steel.For GCr15 steel,no decarburization was found at 750 or 800 ℃,and only partial decarburization was observed at 850 ℃.It indicates that silicon promotes while chromium prevents the complete decarburization of steels in atmosphere with 2 vol.%O_2.The main reason is that silicon increases while chromium reduces the equilibrium concentration of ferrite at the interface of ferrite and austenite,which results in the complete decarburization.  相似文献   

12.
为研究高锰高铝钢的凝固组织,在实验室条件下采用真空感应炉冶炼了三种不同成分的高锰高铝钢。研究结果表明,高锰高铝钢的柱状晶组织比较发达,其晶体尺寸比较粗大;增加钢中的Al含量可以降低柱状晶区比例和晶体尺寸,随着钢中Al含量的增加,钢的热塑性也明显增强;在奥氏体晶界析出的铁素体会降低钢的热塑性,是诱发连铸坯角部裂纹的主要原因。  相似文献   

13.
A self-consistent model for non-partitioning planar ferrite growth from alloyed austenite is presented. The model captures the evolution with time of interfacial contact conditions for substitutional and interstitial solutes. Substitutional element solute drag is evaluated in terms of the dissipation of free energy within the interface, and an estimate is provided for the rate of buildup of the alloying element “spike” in austenite. The transport of the alloying elements within the interface region is modeled using a discrete-jump model, while the bulk diffusion of C is treated using a standard continuum treatment. The model is validated against ferrite precipitation and decarburization kinetics in the Fe-Ni-C, Fe-Mn-C, and Fe-Mo-C systems.  相似文献   

14.
The present investigation is concerned with basic studies of solidification mechanisms in Al-Ti-Si-Mn deoxidized steel weld metals. Assessment of the weld metal solidification micro-structures was done on the basis of optical microscopy in combination with secondary ion mass spectrometry (SIMS), while both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for characterization of indigenous oxide inclusions. It is shown that nonmetallic inclusions play a critical role in the development of the weld metal columnar grain structure by acting as inert substrates for nucleation of delta ferrite ahead of the advancing interface. The nucleation potency of the oxides increases in the order SiO2-MnO, Al2O3-Ti2O3-SiO2-MnO, A12O3, reflecting a corresponding increase in the inclusion/liquid interfacial energy. Moreover, a shift in the peritectic reaction (which facilitates growth of the austenite grains across the phosphorus-rich boundaries of the primary delta ferrite phase) has been observed in the presence of A12O3 inclusions. Indications are that the resulting decrease in the local phosphorus concentrations at the austenite grain boundaries will strongly alter the kinetics of the subsequent solid-state transformation reactions by promoting growth of grain boundary ferrite sideplates at the expense of intragranularly nucleated acicular ferrite.  相似文献   

15.
Some features of dendrite coarsening are studied on individual columnar dendrites in a large steel ingot. The coarsening of dendrite arms in Chernov columnar crystals is observed only in the zone of conventional solidification. In the tips of crystals that penetrate into the shrinkage cavity of the ingot, the initial sizes of the dendrite arms do not change. The coarsening of the primary arms is shown to cause crystal fragmentation into individual dendrites.  相似文献   

16.
The deformation of a directionally solidified columnar dendritic mushy zone in a transparent succinonitrile-acetone (SCN-ACE) alloy has been studied expermentally. In addition to solidifying dendritically like a metal alloy, this alloy also has mechanical properties that are similar to those of metals near the melting point. The experiments are relevant, for example, to the deformation of a partially solidified strand during continuous casting of steel slabs. A test cell was designed which allows for directional solidification of the alloy and controlled compression of the solid-liquid mush which forms. Measurements during solidification and deformation include temperatures, interface positions, local displacements of the solid skeleton in the mush, and liquid concentrations. Results are presented for a range of initial test-cell thicknesses, deformation amounts, and deformation start times. The measurements are suitable for validation of future models.  相似文献   

17.
We have analyzed the evolution of the ferrite fraction and average ferrite grain size during partial cyclic austenite-to-ferrite and ferrite-to-austenite phase transformations in an Fe-0.25C-2.1Mn (wt pct) steel using three-dimensional neutron depolarization (3DND). In the 3DND experiments, the ferrite fraction is derived from the rotation angle of the neutron polarization vector, and the average grain size is determined from the shortening of the polarization vector. From these, the number density of ferrite grains is derived, which indicates that grain nucleation is negligible during partial cycling in the intercritical regime and that all transformation kinetics can be attributed to growth processes only. In the multiple successive cyclic partial transformations, the interfacial migration rate was found to be sluggish due to Mn partitioning. The transformation kinetics determined with 3DND was compared to the predicted behaviors for diffusion-controlled simulations under local equilibrium and para-equilibrium interfacial conditions. It was found that the simulation predictions under local equilibrium only qualitatively capture the transformation kinetic with a difference of one order of magnitude in the variation in the ferrite fraction during cycling. The cyclic behavior of this Fe-0.25C-2.1Mn (wt pct) steel shows that the austenite-ferrite interface indeed migrates back and forth during cycling, while at the same time, there is a gradual increase in both the ferrite fraction and the average ferrite grain size over subsequent cycles. The intrinsic cyclic behavior is only visible after subtracting the effect of the progressive interfacial migration into austenite. The present study demonstrates the advantage of 3DND in studying partial cyclic phase transformations over conventional experimental approaches.  相似文献   

18.
An austenitic Ni-30 wt pct Fe alloy, with a stacking-fault energy and deformation characteristics similar to those of austenitic low-carbon steel at elevated temperatures, has been used to examine the defect substructure within austenite deformed by single-pass strip rolling and to identify those features most likely to provide sites for intragranular nucleation of ultrafine ferrite in steels. Samples of this alloy and a 0.095 wt pct C-1.58Mn-0.22Si-0.27Mo steel have been hot rolled and cooled under similar conditions, and the resulting microstructures were compared using transmission electron microscopy (TEM), electron diffraction, and X-ray diffraction. Following a single rolling pass of ∼40 pct reduction of a 2mm strip at 800 °C, three microstructural zones were identified throughout its thickness. The surface zone (of 0.1 to 0.4 mm in depth) within the steel comprised a uniform microstructure of ultrafine ferrite, while the equivalent zone of a Ni-30Fe alloy contained a network of dislocation cells, with an average diameter of 0.5 to 1.0 μm. The scale and distribution and, thus, nucleation density of the ferrite grains formed in the steel were consistent with the formation of individual ferrite nuclei on cell boundaries within the austenite. In the transition zone, 0.3 to 0.5 mm below the surface of the steel strip, discrete polygonal ferrite grains were observed to form in parallel, and closely spaced “rafts” traversing individual grains of austenite. Based on observations of the equivalent zone of the rolled Ni-30Fe alloy, the ferrite distribution could be correlated with planar defects in the form of intragranular microshear bands formed within the deformed austenite during rolling. Within the central zone of the steel strip, a bainitic microstructure, typical of that observed after conventional hot rolling of this steel, was observed following air cooling. In this region of the rolled Ni-30Fe alloy, a network of microbands was observed, typical of material deformed under plane-strain conditions.  相似文献   

19.
试验研究了0.000 5%~0.001 2%Mg对60 kg真空感应炉熔炼的430铁素体不锈钢(/%:0.04C、0.25~0.32Si、0.28~0.38Mn、16.5~16.9Cr)夹杂物形成和凝固组织的影响。结果表明,430钢液中添加镁合金后,钢中形成平均粒径更小,数量密度更大的含MgO复合夹杂物;镁合金的加入可以改善430钢的凝固组织,且浇铸温度越低,改善效果越明显,在1 580℃浇铸时,等轴晶率由常规钢的30.8%提高至镁处理钢的88.5%,相应等轴晶尺寸由1 741.6μm降至945.3μm。含MgO夹杂物与δ相二维错配度极小,可作为430钢有效异质形核剂,促进等轴晶的形成,抑制柱状晶的生长,细化凝固组织。  相似文献   

20.
为了研究渐变式电压、电流电渣重熔工艺对铸锭组织性能的影响,以45号钢为试验原料,采用低倍腐蚀、光学显微镜(OM)、扫描电子显微镜(SEM)、拉伸力学试验等手段,对比了传统电渣工艺与参数渐变工艺对铸锭凝固组织及性能的差异。结果发现,重熔阶段先逐步降低过程电压,待电压降到一定值后,再逐步降低电流,直至结束熔炼,可以减小铸锭柱状晶组织与铸锭轴线的夹角,使铸锭组织倾向于定向凝固,提高铸锭轴线方向的抗拉强度。此外,通过该工艺获得的凝固组织中铁素体量降低,珠光体中层片结构得到明显细化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号