首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Three γ + β NiCoCrAlY alloys (a cast alloy, a laser-surface-melted (LSM) alloy, and a coating as deposited by electron beam-physical vapor deposition (EB-PVD)) with similar average composition (Ni-20Co-19Cr-24Al-0.2Y in at. pct), but with different microstructures prior to oxidation, were oxidized for 0.5 and 1 hours at 1373 K in an Ar 20 vol pct O2 atmosphere (i.e., at a partial oxygen pressure of 20 kPa). It was found that on the alloy with β precipitates larger than 20 μm, the oxide layer was nonuniform in thickness, and had a laterally inhomogeneous composition and phase constitution. In this case, the oxide layer developed on top of the γ phase was thicker than that formed on top of the β phase and consisted of a NiCr2O4/Cr2O3 outer and an α-Al2O3 inner layer. For the thinner oxide formed on top of the β phase, the outer layer was constituted of a Cr and Co containing NiAl2O4 spinel and the inner layer also consisted of α-Al2O3. For the alloys with β precipitates smaller than 3 μm, a uniform and laterally homogeneous oxide formed, consisting of a Cr and Co containing NiAl2O4 outer layer on top of an α-Al2O3 inner layer. After oxidation, Y was distributed as numerous, small precipitates within the oxide layer for a homogeneous Y distribution prior to oxidation, or as a few, very large pegs along the γ/β phase boundaries of the alloy for an inhomogeneous Y distribution prior to oxidation. The performance of the alloys upon thermal cycling was improved for smaller β precipitates and for a more homogeneous Y distribution in the alloy prior to oxidation.  相似文献   

2.
The effects of microstructure on the fatigue and creep crack growth of Waspaloy and P/M Astroloy were evaluated at 650°C. In Waspaloy, changes in γ′ size and distribution did not markedly affect fatigue crack growth. An increase in fatigue crack growth rate occurred at low test frequencies and was associated with a transition to intergranular crack propagation. In P/M Astroloy, a coarser grain size lowered the fatigue crack growth rate. Serrated grain boundaries, though beneficial under creep loading, have no effect in fatigue.  相似文献   

3.
This paper reports on experiments dedicated to equiaxed solidification carried out on Al — 10 wt% Cu alloy at the European Synchrotron Radiation Facility (ESRF) in Grenoble-France. Equiaxed growth was achieved in nearly isothermal conditions and observed continuously in real time from the early stages of solidification to the developed grain structure by X — ray radiography. The length of primary dendrite arms was measured on several growing equiaxed grains as a function of time and it was found that dendrite arm evolution can be well fitted by the Kolmogorov — Johnson — Mehl — Avrami (KJMA) function. The growth of four primary dendrite arms of a single grain was then characterized. The dendrite arms behaved differently depending on their growth directions and the presence of grains in their vicinities. At the beginning, the dendrite arm directed upwards was growing faster than the ones growing below because of “self — poisoning” due to a gravity driven fluid flow. In the late stage of solidification, analysis on several couples of grains growing towards each other confirmed that solutal interaction was the main cause of growth being stopped.  相似文献   

4.
The effect of aging on microstructure of Mg-Zn-Er alloys at 473 K was investigated using hardness measurement,scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The results indicated that both Mg3.8Zn1.5Er and Mg5Zn2.0Er alloys exhibited visible age-hardening effect,especially the latter alloy.Microstructure analysis showed that,after being aged,lots of fine MgZn2 phases with hexagonal structure were found in the α-Mg matrix.Comparing with Mg3.8Zn1.5Er alloy,the accelerated hardenin...  相似文献   

5.
The impact of cooling rates on the microstructure of Al-U alloys was studied by optical, scanning electron, and transmission electron microscopy. A variety of solidification techniques were employed to obtain cooling rates ranging between 3 × 10−2 and 106 K/s. High-purity uranium (99.9 pct) and high-purity aluminum (99.99 pct), or “commercially pure” type Al-1050 aluminum alloys were used to prepare Al-U alloys with U concentration ranging between 3 and 22 wt pct. The U concentration at which a coupled eutectic growth was observed depends on the cooling rates imposed during solidification and ranged from 13.8 wt pct for the slower cooling rates to more than 22 wt pct for the fastest cooling rates. The eutectic morphology and its distribution depends on the type of aluminum used in preparing the alloys and on the cooling rates during solidification. The eutectic in alloys prepared from pure aluminum was evenly distributed, while for those prepared from Al-1050, the eutectic was unevenly distributed, with eutectic colonies of up to 3 mm in diameter. Two lamellar eutectic structures were observed in alloys prepared from pure aluminum containing more than 18 wt pct U, which solidified by cooling rates of about 10 K/s. One structure consisted of the stable eutectic between UAl4 and Al lamella. The other structure consisted of a metastable eutectic between UAl3 and Al lamella. At least three different eutectic morphologies were observed in alloys prepared from Al-1050.  相似文献   

6.
The microstructure and mechanical properties of Al−Cu−Mg−Li alloy extrusions prepared from both rapidly cooled powder flakes and cast ingots have been determined. Embrittlement of the alloys by lithium was observed in both powder source and ingot source metarial. Fracture in all the powder source alloys was partly transgranular and partly along the boundaries of the original powder flakes. In the ingot source Al 2024 the fracture was transgranular but the addition of lithium changed the fracture path to predominantly integranular. The fatigue crack growth rate of powder source Al 2024 with and without lithium was found to be five to ten times slower than the growth rate of ingot source Al 2024.  相似文献   

7.
The microstructure of electrodeposited titanium-aluminide alloys containing 3.6 to 24.1 at. pct Ti was studied by transmission electron microscopy. The surface morphology of the deposits showed that they contained nodular and faceted grains which tended to be less faceted at higher Ti contents. Extensive 111 twinning was observed in all deposits, and growth striations parallel to were observed in the low Ti deposits. The growth of nodules was linked to the presence of these twins; it was hypothesized that the twin boundaries act as easy atomic attachment points and, therefore, enhance the growth rate. The presence of twins and striations was used to pro-pose a growth mechanism. The 5.3, 15.8, and 24.1 at. pct Ti deposits were single-phase grains of the Ll2 crystal structure, as opposed to the expected equilibrium two-phase mixture of face-centered cubic (fcc) Al (saturated with Ti) and D022 Al3Ti. Calculated electron diffraction in-tensity data were used to demonstrate that the decrease in intensity of the superlattice reflections in the substoichiometric deposits is due to a reduction in the difference in atomic scattering factors between the two lattice site types. formerly NIST/NRC Postdoctoral Research Associate, National Institute of Standards and Technology.  相似文献   

8.
研究不同Al和W含量对四种Co-Al-W三元合金的初熔温度、热处理组织和硬度的影响.结果表明:四种Co-Al-W三元合金的固、液相点温度均超过镍基单晶高温合金液相点温度;在1300℃/8h固溶处理后,三种合金均仅得到γ(fcc)单相组织,而高W合金在晶界和晶内均有μ相Co7W6析出;在800℃/100h和900℃/50h时效处理后,四种合金在基体γ相中均析出Ll2型γ'相Co3(Al,W),其γ+γ'两相组织形貌与镍基高温合金相似;高W(12%)和高Al(12%)合金分别促进了μ相Co7W6和富Al相析出.综合以上结果并结合时效合金的硬度结果,初步确定了含γ+γ'两相组织的合金成分范围.  相似文献   

9.
针对普通熔铸条件下过共晶Al-Fe合金初生富铁相严重割裂基体、恶化合金性能的问题,采用元素Mg对过共晶Al-5%Fe合金进行变质细化处理,Mg以Al-10%Mg中间合金形式加入。借助光学显微镜等分析了Al-10%Mg中间合金晶粒细化剂加入量和熔体保温时间对过共晶Al-5%Fe合金微观组织形貌及性能的影响。试验表明:在过共晶Al-5%Fe合金中加入Al-10%Mg中间合金细化剂,当加入量为1.2%、保温时间90min时,细化效果较好,Al-5%Fe合金中初生A13Fe相由未添加细化剂时的粗大板条状变为花朵状和颗粒状,并且尺寸明显减小,从而显著提高材料的强度和塑性。  相似文献   

10.
11.
The transition from a eutectic to a single phase has been examined through critical experimental studies in the vicinity of the transition conditions. The actual transition is shown to depend on the dynamics of the two competing phases. Close to the transition, an oscillating mode was found in which the system oscillated between the two steady-state morphologies. The transition from a eutectic to a single phase was observed not to be sharp, but to occur over a finite range of velocities in which an oscillating or a banded structure was formed, in which bands of primary phase and eutectic grew alternately in the growth direction. The effects of the imposed velocity and composition on this oscillatory mode were examined. It was found that, when the conditions were farther from the transition point, the oscillations damped out and the system selected one of the stable morphologies. The alloy composition had a significant influence on the oscillation behavior, and the oscillations were found to increase as the compositions deviated from the eutectic composition. The regime of banded structures was established for the carbon tetrabromide-hexachloroethane system, and a conceptual model is presented for the formation of bands. The results are generalized to show that the transition from one phase to the other is accompanied by a transition zone, in which the dynamic processes give rise to an oscillating microstructure between the two phases. Such a transition zone occurs in eutectic, peritectic, and monotectic systems and also during the cellular-to-planar transition of single-phase microstructures.  相似文献   

12.
The effects of microstructure on the erosion of Al-Si alloys by 40 μm Al2O3 particles were investigated. The impact angle dependence of the erosion rate of Al and the Al-Si alloys exhibited the ductile signature, whereas that for pure Si showed the brittle signature. The eroded surface of pure Al was characterized by craters, lips, overlaps and folds, and platelets; that for pure Si exhibited complex radial and lateral cracking at the impact site. At shallow impact angles these features were elongated in the direction of the tangential component of the velocity in both materials. The measured erosion rates of the Al-Si alloys were found to be in accord with an inverse rule of mixtures based on pure Al and pure Si; better agreement was, however, obtained if pure Al and the eutectic were taken as the two constituents for the hypoeutectic alloys, and pure Si and the eutectic for the hypereutectic alloys. The microstructure size had two effects: (a) scaling with respect to the impact damage zone size and (b) an influence on the physical and mechanical properties which govern material removal. The present results are considered in terms of current models for the erosion of ductile and brittle materials.  相似文献   

13.
After a review over former works about the solute redistribution during dendritic solidification, a new“local solute redistribution equation ”is deduced based on Flemings's model, where lim-ited diffusion in solid during solidification is carefully treated. Because a form parameter is also included, the equation can be used for the solidification processes with different shapes of den-drites. By solving the equation at the condition of directional solidification, more completef s -C, functions for both needlelike and platelike dendritic solidifications with both linear and parabolic solidification rates are obtained. As examples, the volume fractions of nonequilibrium phase in Al-4.5 pct Cu alloy is evaluated with differentf s -C l functions. On the thinking that the dendrites in actual solidification process is usually between needlelike and platelike ones, the volume fraction of the nonequilibrium phase is suggested to be in the region between the one calculated by the model for platelike dendrites and that for needlelike dendrites. The relationship between the region and local solidification time is also presented by figures, which are compared with the data of former researchers.  相似文献   

14.
The mechanical properties of Mg-Al alloys are mainly determined by the microstructure, i.e., the amount and morphology of the phases, but also by the presence of defects arising from the melt handling and casting process. In order to obtain information about the isolated effect of the microstructure, it is, therefore, necessary to minimize the amounts of defects. In this study, this has been achieved by remelting and solidifying the alloys in a gradient furnace. The drawing rate was varied from 0.3 to 6 mm/s, which yielded a wide variety of microstructures. Three samples were produced for each parameter set, in order to have a statistical basis for the evaluation. The results showed that homogeneous and reproducible samples could be produced, and that the tensile properties obtained showed a very small scatter. The effects of microstructural parameters such as grain size, secondary dendrite arm spacing (SDAS), eutectic fraction, and eutectic morphology on the yield strength, ultimate tensile strength (UTS), fracture elongation, and hardness has been investigated.  相似文献   

15.
Creep and microstructure of magnesium-aluminum-calcium based alloys   总被引:13,自引:0,他引:13  
This article describes the creep and microstructure of Mg-Al-Ca-based magnesium alloys (designated as ACX alloys, where A stands for aluminum; C for calcium; and X for strontium or silicon) developed for automotive powertrain applications. Important creep parameters, i.e., secondary creep rate and creep strength, for the new alloys are reported. Creep properties of the new alloys are significantly better than those of the AE42 (Mg-4 pct* Al-2 pct RE**) alloy, which is the benchmark creep-resistant magnesium die-casting alloy. Creep mechanisms for different temperature/stress regimes are proposed. A ternary intermetallic phase, (Mg,Al)2Ca, was identified in the microstructure of the ACX alloys and is proposed to be responsible for the improved creep resistance of the alloys. All concentrations in wt. pct, unless otherwise stated. RE stands for a combination of rare earth elements, i.e., misch metal, in this case.  相似文献   

16.
The microstructures of three vanadium-base alloys in the referenced annealed state were investigated by analytical transmission electron microscopy (TEM) and X-ray diffraction. The most common precipitates in all three alloys were particles of fcc TiN1−x−yCxOy. In the alloy V-15Cr-5Ti, particles of type M23C6 were also found. Additional phases in the alloys V-3Ti-1Si and V-20Ti include Ti1.7P- and Ti8S3-type precipitates. Precise lattice parameters of the matrices and the titanium carbonitrides were also measured. Weight percentages of the combined precipitates were determinedvia electrolytic extraction procedures.  相似文献   

17.
Tb0.3Dy0.7HoxFe1.95 (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.35, 0.50, 0.65) quaternary alloys were prepared by arc-melting and followed by annealing. The phases present and structure of the alloys were determined using a D8-Advance X-ray diffractometer. The magnetostriction of the alloys was studied by standard strain gauge technique. The dependence of Ho content on the structure, magnetostriction and density of the alloys was investigated in detail. The research results showed that Ho-doping did not change MgCu2-type cubic Laves structure in Tb0.3Dy0.7Fe1.95. When Ho content x≤0.2, rich rare earth phase presented in the alloys increased and magnetostriction of the alloys reduced evidently with increasing x, but for alloys with x>0.2, the content of rich rare earth phase started to reduce and the magnetostriction increased quickly, especially at low magnetic field in the alloy with x=0.65 due to separation of rich rare earth phases on the surface of the alloy.  相似文献   

18.
Microstructure, tensile properties and compressive creep behaviors of Mg-(1.65-11.52) wt.% Sn-2 wt.% Nd alloys were studied in this paper. The microstructure of the as-cast Mg-Sn-Nd alloys consisted of dendritic α-Mg, Mg2Sn and Mg-Sn-Nd ternary phase containing rare earth element. The highest ultimate tensile strength of 140 MPa and percentage elongation after fracture of 9.7%, were achieved with a composition of Mg-8.23 wt.% Sn-2 wt.% Nd. The compressive creep resistance of Mg-8.23 wt.%Sn-2 wt.% Nd alloy w...  相似文献   

19.
Analytic scaling formulas of complete constitutional generality for forced velocity cells and dendrites were in earlier research perfected forin situ steady-state solidification conditions involving binary organic alloys. As a further test, these were used, given the velocity and gradient control parameters, to predict the primary and secondary dendrite arm spacings of unidirectionally cooled Al-Cu alloys for which a large data set is available. Numerical methods were employed to determine the control parameters that exist under unsteady-state ingot solidification conditions according to the Scheil formulation. Primary and secondary arm spacings, corrected empirically for ripening, that by and large agree with the Al-Cu experimental data were obtained, demonstrating that the formulas are adequate for the prediction of dendrite scales in steady and unsteady-state conditions. The predictions have been incorporated into a computer program that displays the time-dependent columnar microstructure and mushy zone in an ingot cross section of an oriented single crystal together with the thermal and liquid-solid distributions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号