首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This study describes the translocation of the brain specific protein kinase C gamma isoenzyme (PKCγ) in the hippocampus during food rewarded spatial learning. The holeboard test was used for spatial orientation, and immunoblot analysis was used for assessment of PKCγ in cytosolic, membrane-inserted and membrane-associated fractions. Membrane-associated PKCγ was increased during early acquisition of spatial learning, but not in a later phase of training. This transient and apparently temporary intracellular PKCγ translocation was only observed in the posterior but not in the anterior hippocampus, and was only detected within 10 min after termination of the learning trial. This study supports the idea that PKCγ is significantly involved in the biochemical events underlying learning and memory, notably during the period of novel information processing. The results further promote the hypothesis that the hippocampus is specifically involved in temporal information processing, which requires the engagement of PKCγ. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
We report here investigations on the functional involvement of hippocampal protein kinase C (PKC) in learning and long-term retention of spatial discrimination in a radial maze. A pharmacological approach was employed to test the behavioural effects of intrahippocampal injections of drugs that either activate or inhibit PKC activity. Mice with intrahippocampal guide cannula were trained in a mixed spatial reference-working memory task during 7 daily sessions. Sixteen days later, the animals were submitted to a retention session. In the first experiment, the animals were treated before each learning session with polymyxin B (PMB, a PKC inhibitor) and their scores were compared to those of an appropriate control group. In the second experiment, a group received the injection of 1-oleoyl-2-acetyl glycerol (OAG, a PKC activator) before and after the 7th learning session in order to test the effect of activation of PKC on long-term retention. The results showed that: (1) PMB administration delayed the acquisition of the reference memory component of the task, whereas long-term retention appeared to be improved; and (2) administration of OAG at the end of the acquisition phase improved long-term retention. Neither PMB nor OAG appeared to affect working memory. Taken together, the results point to an involvement of hippocampal PKC in the acquisition of information destined for long-term storage.  相似文献   

3.
This study describes the translocation of the brain specific protein kinase C gamma isoenzyme (PKCgamma) in the hippocampus during food rewarded spatial learning. The holeboard test was used for spatial orientation, and immunoblot analysis was used for assessment of PKCgamma in cytosolic, membrane-inserted and membrane-associated fractions. Membrane-associated PKCgamma was increased during early acquisition of spatial learning, but not in a later phase of training. This transient and apparently temporary intracellular PKCgamma translocation was only observed in the posterior but not in the anterior hippocampus, and was only detected within 10 min after termination of the learning trial. This study supports the idea that PKCgamma is significantly involved in the biochemical events underlying learning and memory, notably during the period of novel information processing. The results further promote the hypothesis that the hippocampus is specifically involved in temporal information processing, which requires the engagement of PKCgamma.  相似文献   

4.
Modulation of protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) activities by delta-opioid receptor specific agonist [D-Pen2, D-Pen5]-enkephalin (DPDPE) was investigated in neuroblastoma x glioma hybrid NG 108-15 cells. DPDPE activated PKC in a dose-dependent manner, with the maximal response at 5 min. The DPDPE-stimulated PKC activation could be blocked by naltrindole. The activation of PKC by DPDPE was dependent on Ca2+ and was inhibited by chelerythrine chloride (10 microM), but not by H89 (1 microM). Pretreatment of NG 108-15 cells with pertussis toxin (100 ng/ml for 24 h) completely abolished DPDPE-stimulated PKC activation. In contrast to the result from the acute treatment with DPDPE, which had no significant effect on PKA activity, chronic treatment of DPDPE (1 microM for 24 h) increased PKA activity, but reduced the basal activity of PKC. These results demonstrated that DPDPE differentially modulated PKC and PKA activities via a receptor-mediated, PTX sensitive pathway.  相似文献   

5.
Age-related spatial memory deficits are correlated with septohippocampal cholinergic system degeneration. The present study examined the effect of intraseptal infusions of the cholinergic agonist, oxotremorine, on spatial reference memory in middle-aged rats using place discrimination in the water maze, and on cholinergic activity using choline acetyltransferase (ChAT) activity. Oxotremorine mildly improved the rate of place discrimination acquisition of middle-aged rats during initial sessions only, but did not affect asymptotic levels of performance achieved. Of the brain regions assayed, ChAT activity increased with age in the temporal cortex and dorsal CA2/3 region of the hippocampus. Oxotremorine significantly decreased ChAT activity in the dorsal hippocampus. In contrast to our previous results in aged rats indicating a more robust effect of oxotremorine on spatial working memory, the present results suggest a modest effect of intraseptal oxotremorine on the acquisition of a spatial reference memory task.  相似文献   

6.
7.
A tetrodotoxin-resistant voltage-gated Na+ current (TTX-R INa) appears to be the current primarily responsible for action potential generation in the cell body and terminals of nociceptive afferents. Although other voltage-gated Na+ currents are modulated by the activation of protein kinase C (PKC), protein kinase A (PKA), or both, the second messenger pathways involved in the modulation of TTX-R INa are still being defined. We have examined the modulation of TTX-R INa in isolated sensory neurons with whole-cell voltage-clamp recording. Activation of either PKC or PKA increased TTX-R INa. PKA activation also produced a leftward shift in the conductance-voltage relationship of TTX-R INa and an increase in the rates of current activation, deactivation, and inactivation. Inhibitors of PKC decreased TTX-R INa, whereas inhibitors of PKA had no effect on the current. Investigating the interaction between PKC and PKA revealed that although inhibitors of PKA had little effect on PKC-induced modulation of TTX-R INa, inhibitors of PKC significantly attenuated PKA-induced modulation of the current. Finally, although PGE2-induced modulation of TTX-R INa was more similar to PKA-induced modulation of the current than to PKC-induced modulation, PGE2-induced effects were inhibited by inhibitors of both PKC and PKA. Thus, although TTX-R INa is a common target for cellular processes involving the activation of either PKA or PKC, PKC activity is necessary to enable subsequent PKA-mediated modulation of TTX-R INa.  相似文献   

8.
In this study we investigated the role of protein kinase C (PKC) in associative learning of Apis mellifera. Changes in PKC activity induced by olfactory conditioning were measured in the antennal lobes, a brain structure involved in associative learning. Multiple conditioning trials inducing a memory different from that induced by a single conditioning trial specifically cause an increase in PKC activity. This increase begins 1 hr after conditioning, lasts up to 3 d, and is attributable to an increased level of constitutive PKC. The increased level of constitutive PKC consists of an early proteolysis-dependent phase and a late phase that requires RNA and protein synthesis. Inhibition of the pathways resulting in constitutive PKC selectively impairs distinct phases of multiple-trial induced memory. The inhibition of the proteolytic mechanism has an instant effect on an early phase of multiple-trial induced memory but does not affect acquisition and the late phase of memory. Blocking of the transient PKC activation during conditioning does not affect the induction of memory formation. Thus, the constitutive PKC in the antennal lobe seems to contribute to the early phase of memory that is induced by multiple-trial conditioning.  相似文献   

9.
Cardiomyocytes subjected to brief episode of hypoxia possess a resistance to serious damaging effect exerted by a subsequent long-time hypoxia on these cells, which is called hypoxic preconditioning (PC). The pathway of intracellular signal transduction during hypoxia PC has not yet been validated. On a model of hypoxia/reoxygenation (H/R) of cultured neonatal rabbit cardiomyocytes, the present study is taken to investigate the changes of mitogen-activated protein kinase (MAPK) and ribosomal S6 kinase (S6K) activity. It was found that intracellular total MAPK and nuclear MAPK, after a 15-min period of reoxygenation preceded by a single 60-min period of hypoxia, were increased by 95% and 230%, respectively. Intracellular S6K activity increased by 142% at 30 min of H/R vs the control group (P < 0.01). Phosphatase 1 (PPase 1) inhibitor (ocadaic acid, OA 1 mumol/L) augmented the increase of MAPK and S6K activity induced by H/R. However, tyrosine kinase (Tyr K) inhibitor (genistein), protein kinase C (PKC) inhibitor (H7) and preincubation of cardiomyocytes with PKC activator PMA all reduced MAPK activation by H/R. Protein kinase A (PKA) inhibitor (H89), Ca2+/Calmodulin-dependent protein kinase (PKM) inhibitor (W7) or PPase 2a inhibitor (OA 10 nmol/L) had no significant effect on MAPK and S6K activity. The above results suggested that activation of MAPK and S6K activity during hypoxia/reoxygenation there might require participation of PKC, Tyr K and PPase 1, while PKA, PKM and PPase 2a were not involved.  相似文献   

10.
FE Sieber  RJ Traystman  PR Brown  LJ Martin 《Canadian Metallurgical Quarterly》1998,29(7):1445-52; discussion 1452-3
BACKGROUND AND PURPOSE: Studies suggest that protein kinase C (PKC) activation during ischemia plays an important role in glutamate neurotoxicity and that PKC inhibition may be neuroprotective. We tested the hypothesis that elevations in the biochemical activity and protein expression of Ca2+-dependent PKC isoforms occur in hippocampus and cerebellum during the period of delayed neurodegeneration after mild brain ischemia. METHODS: We used a dog model of 20 minutes of global incomplete ischemia followed by either 6 hours, 1 day, or 7 days of recovery. Changes in PKC expression (Western blotting and immunocytochemistry) and biochemical activity were compared with neuropathology (percent ischemically damaged neurons) by means of hematoxylin and eosin staining. RESULTS: The percentage of ischemically damaged neurons increased from 13+/-4% to 52+/-10% in CA1 and 24+/-11% to 69+/-6% in cerebellar Purkinje cells from 1 to 7 days, respectively. The occurrence of neuronal injury was accompanied by sustained increases in PKC activity (240% and 211% of control in hippocampus and cerebellum, respectively) and increased protein phosphorylation as detected by proteins containing phosphoserine residues. By Western blotting, the membrane-enriched fraction showed postischemic changes in protein expression with increases of 146+/-64% of control in hippocampal PKCalpha and increases of 138+/-38% of control in cerebellar PKCalpha, but no changes in PKCbeta and PKCgamma were observed. By immunocytochemistry, the neuropil of CA1 and CA4 in hippocampus and the radial glia in the molecular layer of cerebellum showed increased PKCalpha expression after ischemia. CONCLUSIONS: This study shows that during the period of progressive ischemic neurodegeneration there are regionally specific increases in PKC activity, isoform-specific increases in membrane-associated PKC, and elevated protein phosphorylation at serine sites.  相似文献   

11.
Protein kinase A (PKA) stimulates Cl secretion by activating the cystic fibrosis transmembrane conductance regulator (CFTR), a tightly regulated Cl- channel in the apical membrane of many secretory epithelia. The CFTR channel is also modulated by protein kinase C (PKC), but the regulatory mechanisms are poorly understood. Here we present evidence that PKA-mediated phosphorylation alone is not a sufficient stimulus to open the CFTR chloride channel in the presence of MgATP; constitutive PKC phosphorylation is essential for acute activation of CFTR by PKA. When patches were excised from transfected Chinese hamster ovary cells, CFTR responses to PKA became progressively smaller with time and eventually disappeared. This decline in PKA responsiveness did not occur in the presence of exogenous PKC and was reversed by the addition of PKC to channels that had become refractory to PKA. PKC enhanced PKA stimulation of open probability without increasing the number of functional channels. Short-term pretreatment of cells with the PKC inhibitor chelerythrine (1 microM) reduced the channel activity that could be elicited by forskolin in cell-attached patches. Moreover, in whole cell patches, acute stimulation of CFTR currents by chlorophenylthio-cAMP was abolished by two chemically unrelated PKC inhibitors, although an abrupt, partial activation was observed after a delay of >15 min. Modulation by PKC was most pronounced when basal PKC phosphorylation was reduced by briefly preincubating cells with chelerythrine. Constitutive PKC phosphorylation in unstimulated cells permits the maximum elevation of open probability by PKA to reach a level that is approximately 60% of that attained during in vitro exposure to both kinases. Differences in basal PKC activity may contribute to the variable cAMP responsiveness of CFTR channels in different cell types.  相似文献   

12.
The rod photoreceptors of teleost retinas elongate in the light. To characterize the role of protein kinases in elongation, pharmacological studies were carried out with rod fragments consisting of the motile inner segment and photosensory outer segment (RIS-ROS). Isolated RIS-ROS were cultured in the presence of membrane-permeant inhibitors that exhibit selective activity toward specific serine/threonine protein kinases. We report that three distinct classes of protein kinase inhibitors stimulated elongation in darkness: (1) cyclic-AMP-dependent protein kinase (PKA)-selective inhibitors (H-89 and KT5720), (2) a protein kinase C (PKC)-selective inhibitor (GF 109203X) that affects most PKC isoforms, and (3) a kinase inhibitor (H-85) that does not affect PKC and PKA in vitro. Other kinase inhibitors tested neither stimulated elongation in darkness nor inhibited light-induced elongation; these include the myosin light chain kinase inhibitors ML-7 and ML-9, the calcium-calmodulin kinase II inhibitor KN-62, and inhibitors or activators of diacylglycerol-dependent PKCs (sphingosine, calphostin C, chelerythrine, and phorbol esters). The myosin light chain kinase inhibitors as well as the PKA and PKC inhibitors H-89 and GF 109203X all enhanced light-induced elongation. These observations suggest that light-induced RIS-ROS elongation is inhibited by both PKA and an unidentified kinase or kinases, possibly a diacylglycerol-independent form of PKC.  相似文献   

13.
To explore the role of protein kinase A (PKA) in the late phase of long-term potentiation (L-LTP) and memory, we generated transgenic mice that express R(AB), an inhibitory form of the regulatory subunit of PKA, only in the hippocampus and other forebrain regions by using the promoter from the gene encoding Ca2+/ calmodulin protein kinase IIalpha. In these R(AB) transgenic mice, hippocampal PKA activity was reduced, and L-LTP was significantly decreased in area CA1, without affecting basal synaptic transmission or the early phase of LTP. Moreover, the L-LTP deficit was paralleled by behavioral deficits in spatial memory and in long-term but not short-term memory for contextual fear conditioning. These deficits in long-term memory were similar to those produced by protein synthesis inhibition. Thus, PKA plays a critical role in the consolidation of long-term memory.  相似文献   

14.
The extent to which regenerative action potentials invade hippocampal CA1 pyramidal dendrites is dependent on both recent activity and distance from the soma. Previously, we have shown that the amplitude of back-propagating dendritic action potentials can be increased by activating either protein kinase A (PKA) or protein kinase C (PKC) and a subsequent depolarizing shift in the activation curve for dendritic K+ channels. Physiologically, an increase in intracellular PKA and PKC would be expected upon activation of beta-adrenergic and muscarinic acetylcholine receptors, respectively. Accordingly, we report here that activation of either of these neurotransmitter systems results in an increase in dendritic action-potential amplitude. Activation of the dopaminergic neurotransmitter system, which is also expected to raise intracellular adenosine 3',5'-cyclic monophosphate (cAMP) and PKA levels, increased action-potential amplitude in only a subpopulation of neurons tested.  相似文献   

15.
When 7721 human hepatocarcinoma cells were treated with 100 nM phorbol-12-myristate-13-acetate (PMA), the activity of N-acetylglucosaminyltransferase V(GnT-V) in the cells varied in accordance with the activity of membranous protein kinase C (PKC), but not with that of cytosolic PKC. Quercetin, a non-specific inhibitor of Ser/Thr protein kinase, and D-sphingosine and staurosporine, two specific inhibitors of PKC, blocked the activation of membranous PKC and GnT-V by PMA. Among the three inhibitors, quercetin was least effective. The inhibitory rates of quercetin and staurosporine toward membranous PKC and GnTV were proportional to the concentrations of the two inhibitors. The activities of GnTV and membranous protein kinase A (PKA) were also induced in parallel by dibutyryl cAMP (db-cAMP) and this induction was blocked by a specific PKA inhibitor. When cell free preparations of 7721 cells and human kidney were treated with alkaline phosphatase (ALP) to remove the phosphate groups, the GnTV activities were decreased. These results suggest that GnTV may be activated by membranous PKC or PKA, indirectly or directly, via phosphorylation of Ser/Thr residues.  相似文献   

16.
We have previously shown that direct activation of protein kinase A (PKA) and protein kinase C (PKC) induced changes in the expression of genes coding for PKA RII beta and C alpha subunit isoforms in cultured anterior pituitary cells, suggesting the possibility of interconnected regulation at this point. To evaluate whether the cell content of PKA protein subunits could be similarly altered, the catalytic (C) and regulatory type I (RI) and type II (RII) subunits were identified by Western blot analysis using specific immunoaffinity-purified antibodies. Activation of PKA by the permeant cyclic adenosine monophosphate (cAMP) analogue 8-Br-cAMP induced a dramatic time- and concentration-dependent decline of C subunit to a residual level that may represent 10-15% of that in untreated cells. The most profound decrease occurred during the first 5 h following treatment with 0.5-2 mM analogue (by 65 +/- 14 and 79 +/- 5%, respectively). Under identical conditions, RII was increased by about 40% at the higher concentrations, while RI increased slightly, but only at low concentrations (below 1 mM 8-Br-cAMP), and then gradually decreased. Exposure of cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) also resulted in decreased levels of the PKA C subunit, however, with a different concentration-dependent profile. In particular, a decline in PKA C was most pronounced (60%) at a low concentration of TPA (10 nM) as compared with the concentrations equal to or above 20 nM (40% decrease). TPA at 10 nM also depressed notably (by 25%) the level of RII subunit, but higher concentrations were essentially ineffective, although a slight and statistically not significant elevation of the cell subunit content was observed as for RI. Simultaneous activation of both PKA and PKC pathways resulted in further depletion of PKA C and an important loss (50%) of RII, a subunit which was enhanced by the activation of either system alone. Finally, gonadotropin-releasing hormone, a neuropeptide that has the potentiality to activate both PKA and PKC signaling in gonadotropes, was able to alter PKA subunit cell content: PKA C was significantly reduced at either a subliminal (0.1 nM) or maximal (10 nM) concentration, whereas RII increased at the low concentration and decreased at the high concentration. In conclusion, these data demonstrate that the pituitary cell contents of RI, RII, and C subunits of PKA are regulated under the activation of PKA itself as well as PKC in a manner that can exhibit further alteration when both systems come simultaneously into play. Changes in the PKA subunit levels in certain cases may correlate with a variation of the mRNAs suggesting multiple control mechanisms, including an alteration of gene expression and changes in subunit degradation, synthesis, and/or turnover. These data, together with those obtained in the presence of gonadotropin-releasing hormone, provide further support for a hormonally induced interplay between PKA and PKC signaling pathways at the crucial level of PKA in the pituitary gland including gonadotropes.  相似文献   

17.
The role of protein kinase A (PKA) and protein kinase C (PKC) in the function and modulation by mercury chloride of the GABA(A) receptor-chloride channel complex was studied with rat dorsal root ganglion cells using the whole-cell patch clamp technique. When added to the internal pipette solutions, both KT 5720, a selective PKA inhibitor, and calphostin C, a selective PKC inhibitor, increased the maximal current and shifted the EC50 for GABA in the direction of higher GABA concentrations. GABA-activated currents were decreased by the addition of 5 mM cAMP to the internal pipette solution, and by external perfusion of 100 nM phorbol 13-myristate 13-acetate. Mercury chloride potentiation of GABA-activated currents was blocked by internal application of 5 mM cAMP. PKA in the recording pipette abolished the mercury chloride potentiation of GABA-activated currents. In contrast, 0.56 microM KT 5720, but not calphostin C, in the internal pipette solution enhanced the effect of mercury chloride. In conclusion, both PKA and PKC negatively regulate the activity of the GABA(A) receptor-channel complex probably through phosphorylation of the receptor, and the PKA system underlies the mechanism of mercury chloride potentiation of GABA-activated currents.  相似文献   

18.
Differentiation of rat satellite cells, measured by cell fusion into myotubes and isozymic conversion of creatine kinase and phosphoglycerate mutase, was shown to be highly increased in the presence of 1-(5-isoquinolinylsulfonyl)-3-methylpiperazine (iso-H7). This substance inhibited both protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) activities with similar IC50 between 22 and 34 microM. Iso-H7, as well as the PKA inhibitor HA1004 increased myogenic differentiation without altering the proliferation of satellite cells, whereas the proliferation and the differentiation of these cells were inhibited by the PKC inhibitor staurosporine. Our results suggest a predominant negative control of PKA on satellite cell myogenesis.  相似文献   

19.
Several protein kinases are known to phosphorylate Ser/Thr residues of certain GABAA receptor subunits. Yet, the effect of phosphorylation on GABAA receptor function in neurons remains controversial, and the functional consequences of phosphorylating synaptic GABAA receptors of adult CNS neurons are poorly understood. We used whole-cell patch-clamp recordings of GABAA receptor-mediated miniature IPSCs (mIPSCs) in CA1 pyramidal neurons and dentate gyrus granule cells (GCs) of adult rat hippocampal slices to determine the effects of cAMP-dependent protein kinase (PKA) and Ca2+/phospholipid-dependent protein kinase (PKC) activation on the function of synaptic GABAA receptors. The mIPSCs recorded in CA1 pyramidal cells and in GCs were differentially affected by PKA and PKC. In pyramidal cells, PKA reduced mIPSC amplitudes and enhanced the fraction of events decaying with a double exponential, whereas PKC was without effect. In contrast, in GCs PKA was ineffective, but PKC increased the peak amplitude of mIPSCs and also favored double exponential decays. Intracellular perfusion of the phosphatase inhibitor microcystin revealed that synaptic GABAA receptors of pyramidal cells, but not those of GCs, are continually phosphorylated by PKA and conversely, dephosphorylated, most likely by phosphatase 1 or 2A. This differential, brain region-specific phosphorylation of GABAA receptors may produce a wide dynamic range of inhibitory synaptic strength in these two regions of the hippocampal formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号