首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To estimate the radiation risk of astronauts during space missions, it is necessary to measure dose characteristics in various compartments of the spacecraft; this knowledge can be further used for estimating the health hazard in planned missions. This contribution presents results obtained during several missions on board the International Space Station (ISS) during 2005-09. A combination of thermoluminescent and plastic nuclear track detectors was used to measure the absorbed dose and dose equivalent. These passive detectors have several advantages, especially small dimensions, which enabled their placement at various locations in different compartments inside the ISS or inside the phantom. Variation of dosimetric quantities with the phase of the solar cycle and the position inside the ISS is discussed.  相似文献   

2.
3.
One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Since aluminum (traditionally used in spacecraft to avoid potential radiation risks) leads to prohibitively expensive mission launch costs, alternative materials need to be explored. An overview of the materials related issues and their impact on human space exploration will be given.  相似文献   

4.
The main purpose of Liulin-type spectrometry-dosimetry instruments (LSDIs) is cosmic radiation monitoring at the workplaces. An LSDI functionally is a low mass, low power consumption or battery-operated dosemeter. LSDIs were calibrated in a wide range of radiation fields, including radiation sources, proton and heavy-ion accelerators and CERN-EC high-energy reference field. Since 2000, LSDIs have been used in the scientific programmes of four manned space flights on the American Laboratory and ESA Columbus modules and on the Russian segment of the International Space Station, one Moon spacecraft and three spacecraft around the Earth, one rocket, two balloons and many aircraft flights. In addition to relative low price, LSDIs have proved their ability to qualify the radiation field on the ground and on the above-mentioned carriers.  相似文献   

5.
As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.  相似文献   

6.
Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ’Centre National d’Etudes Spatiales’ (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ‘Deutsches Zentrum für Luft- und Raumfahrt e.V.’ (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.  相似文献   

7.
Space activities in earth orbit or in deep space pose challenges to the estimation of risk factors for both astronauts and instrumentation. In space, risk from exposure to ionising radiation is one of the main factors limiting manned space exploration. Therefore, characterising the radiation environment in terms of the types of radiations and the quantity of radiation that the astronauts are exposed to is of critical importance in planning space missions. In this paper, calculations of the response of TEPC to protons and carbon ions were reported. The calculations have been carried out using Monte Carlo track structure simulation codes for the walled and the wall-less TEPC counters. The model simulates nonhomogenous tracks in the sensitive volume of the counter and accounts for direct and indirect events. Calculated frequency- and dose-averaged lineal energies 0.3 MeV-1 GeV protons are presented and compared with the experimental data. The calculation of quality factors (QF) were made using individual track histories. Additionally, calculations of absolute frequencies of energy depositions in cylindrical targets, 100 nm height by 100 nm diameter, when randomly positioned and oriented in water irradiated with 1 Gy of protons of energy 0.3-100 MeV, is presented. The distributions show the clustering properties of protons of different energies in a 100 nm by 100 nm cylinder.  相似文献   

8.
The compact, robust nature of the CMOS solid-state photomultiplier (SSPM) allows the creation of small, low-power scintillation-based radiation measurement devices. Monitoring space radiation including solar protons and secondary neutrons generated from high-energy protons impinging on spacecraft is required to determine the dose to astronauts. Small size and highly integrated design are desired to minimize consumption of payload resources.RMD is developing prototype radiation measurement and personal dosimeter devices using emerging scintillation materials coupled to CMOS SSPM’s for multiple applications. Spectroscopic measurements of high-energy protons and gamma-rays using tissue-equivalent, inorganic scintillators coupled to SSPM devices demonstrate the ability of an SSPM device to monitor the dose from proton and heavy ion particles, providing real time feedback to astronauts. Measurement of the dose from secondary neutrons introduces additional challenges due to the need to discriminate neutrons from other particle types and to accurately determine their energy deposition. We present strategies for measuring neutron signatures and assessing neutron dose including simulations of relevant environments and detector materials.  相似文献   

9.
10.
我国天地一体化航天互联网构想   总被引:24,自引:0,他引:24  
地面互联网技术的快速发展以及航天任务的复杂性不断提高,产生了将互联网扩展到空间、建立天地一体化航天互联网的强烈需求,并提供了实现的技术可能性。探讨了我国航天任务中存在的不同卫星天地协议不统一、航天任务数据不能共享、资源综合利用率低等问题,分析了对未来任务的需求,阐述了建设我国天地一体化航天互联网的重要意义;介绍了国外航天互联网发展状况;提出了我国天地一体化航天互联网的总体目标、组成、网络体系结构及网络协议的初步构想;分析了需要突破的关键技术;最后提出了发展步骤建议。  相似文献   

11.
Microelectromechanical devices for satellite thermal control   总被引:3,自引:0,他引:3  
Future space missions will include constellations of spacecraft, including nano- and picosatellites, where adaptive thermal control systems will be needed that fit the constraints of space applications with limited power and mass budgets. A microelectromechanical systems (MEMS) solution has been developed that will vary the emissivity on the surface of the small satellite radiator. The system is based on louver thermal controllers, where panels are mechanically positioned to modulate the effective radiator surface area. This system consists of MEMS arrays of gold-coated sliding shutters, fabricated with the Sandia ultraplanar, multilevel MEMS technology fabrication process, which utilizes multilayer polycrystalline silicon surface micromachining. The shutters can be operated independently to allow digital control of the effective emissivity. This first demonstrator technology is limited in the possible emittance range to a 40% change. Early prototypes of MEMS louvers that open away from the structure have shown the capability of a much wider dynamic range. The first generation of this active thermal management system will be demonstrated on NASA's New Millennium Program ST-5 spacecraft. With the opportunity to validate the MEMS thermal control technology in space on ST-5, lightweight, low-power MEMS radiators offer a possibility for flexible thermal control on future nanosatellites.  相似文献   

12.
Space radiation represents one of the major health hazards to crews of interplanetary missions. As the duration of space flight increases, according to International Space Station (ISS) and Mars mission programs, the risk associated with exposure to ionizing radiation also increases. Although physical dosimetry is routinely performed in manned space missions, it is generally accepted that direct measurement of biological endpoints (biological dosimetry) is necessary for a precise assessment of radiation risk in extraterrestrial activities. Chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBLs) are particularly suitable to this purpose, as they can provide estimates of both equivalent radiation dose and risk. In this study, cytogenetic analysis was performed on PBL chromosomes of an Italian astronaut involved in two different 10-day missions on the ISS (Marco Polo, April 2002, and ENEIDE, May 2005). Blood samples were collected before and after flights. CAs were evaluated in either mitotic spreads or in prematurely condensed chromosomes (PCC) by Fluorescence in Situ Hybridization (FISH). In addition, blood samples were exposed to graded doses of X-rays in vitro before and after the flight and cytogenetic damage evaluated to investigate whether the space environment alters the sensitivity of human cells to ionizing radiation. The yield of baseline chromosomal aberrations was not modified following Marco Polo and ENEIDE mission. This is consistent with the low dose absorbed in these short-term space missions. Preliminary results from Marco Polo mission suggested a significant increase in intrinsic radiosensitivity of lymphocytes after landing compared to pre-flight and follow-up (6 months after landing) samples. However, this effect was not observed during the ENEIDE mission. The results suggest that intra-indi-vidual variations in radiosensitivity are significant, but they cannot be related to the space flight.  相似文献   

13.
《低温学》2006,46(2-3):231-236
Space exploration missions require electronics capable of efficient and reliable operation at low temperatures. Presently, spacecraft on-board electronics are maintained at approximately 20 °C through the use of radioisotopes. Cryogenic electronics would enhance efficiency of space systems, improve reliability, and simplify their design. A Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electronics suitable for space exploration missions. The effects of cryogenic temperature and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for low temperature operation. An overview of this program along with selected experimental data is presented in this paper.  相似文献   

14.
Cosmic radiation shielding properties are important for spacecraft, and hydrogenous materials such as polyethylene have been shown to be effective in shielding against galactic cosmic rays and solar energetic particles. Ultrahigh molecular weight polyethylene (UHMWPE) fibers, which are effective in such shielding, also have advanced mechanical and physical properties, which potentially are very valuable for NASA space missions both as a radiation shield and as vehicle structure. In our previous studies, we fabricated a nano-epoxy matrix with reactive graphitic nanofibers that showed enhanced mechanical (including strength, modulus and toughness) and thermal properties (higher Tg, stable CTE, and higher ageing resistance), as well as wetting and adhesion ability to UHMWPE fibers. In this work, the radiation shielding performance of the UHMWPE fiber reinforced nano-epoxy composite was characterized by radiation tests at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. The results showed that the high radiation shielding performance associated with UHMWPE was not degraded by the addition of graphitic nanofibers in the matrix. Together with the previous studies showing higher mechanical properties, these new studies validate the importance of the UHMWPE fiber/nano-epoxy composite for potential applications in more durable space composites and structures, and offer reduced manufacturing costs and wider design applications through avoidance of specialized and in some cases ineffective UHMWPE fiber surface treatment processes.  相似文献   

15.
Human factors are a dominant aspect in space missions, which may strongly influence work results and efficiency. To assess their impact on future long term space missions and to attempt a general quantification, the environmental and technical conditions to which astronauts may be confronted need to be reproduced as closely as possible. Among the stressors that occur during space missions, limited resources, limited social interactions, long term living and working in confined and isolated areas are among the most important for future planetary exploration. The European Space Agency (ESA) has a strong interest in obtaining data and insights in human aspects to prepare for future studies on the definition of future Lunar and Martian planetary habitats. In this frame, ESA’s Directorate of Human Space Flight was associated to the EuroGeoMars campaign conducted by the Crews 76 and 77 in February 2009 in The Mars Society’s ‘Mars Desert Research Station’ (MDRS) in the Desert of Utah. The EuroGeoMars Campaign lasted 5 weeks and encompassed two groups of experiments, on human crew related aspects and field experiments in geology, biology and astronomy/astrophysics. The human crew related aspects covered (1) crew time organization in a planetary habitat, (2) an evaluation of the different functions and interfaces of this habitat, (3) an evaluation of man–machine interfaces of science and technical equipment. Several forms and questionnaires were filled in by all crew members: time and location evaluation sheets and two series of questionnaires. In addition, the crew participated in another on-going food study where the type of food was imposed and crew impressions were collected via questionnaires. The paper recalls the objectives of the human crew related experiments of the EuroGeoMars project and presents the first results of these field investigations. Some recommendations and lessons learnt will be presented and used as first inputs for future planetary habitat definition studies.  相似文献   

16.
Astrobiology strives to increase our knowledge on the origin, evolution and distribution of life, on Earth and beyond. In the past centuries, life has been found on Earth in environments with extreme conditions that were expected to be uninhabitable. Scientific investigations of the underlying metabolic mechanisms and strategies that lead to the high adaptability of these extremophile organisms increase our understanding of evolution and distribution of life on Earth. Life as we know it depends on the availability of liquid water. Exposure of organisms to defined and complex extreme environmental conditions, in particular those that limit the water availability, allows the investigation of the survival mechanisms as well as an estimation of the possibility of the distribution to and survivability on other celestial bodies of selected organisms. Space missions in low Earth orbit (LEO) provide access for experiments to complex environmental conditions not available on Earth, but studies on the molecular and cellular mechanisms of adaption to these hostile conditions and on the limits of life cannot be performed exclusively in space experiments. Experimental space is limited and allows only the investigation of selected endpoints. An additional intensive ground based program is required, with easy to access facilities capable to simulate space and planetary environments, in particular with focus on temperature, pressure, atmospheric composition and short wavelength solar ultraviolet radiation (UV). DLR Cologne operates a number of Planetary and Space Simulation facilities (PSI) where microorganisms from extreme terrestrial environments or known for their high adaptability are exposed for mechanistic studies. Space or planetary parameters are simulated individually or in combination in temperature controlled vacuum facilities equipped with a variety of defined and calibrated irradiation sources. The PSI support basic research and were recurrently used for pre-flight test programs for several astrobiological space missions. Parallel experiments on ground provided essential complementary data supporting the scientific interpretation of the data received from the space missions.  相似文献   

17.
Long-term manned space missions requires a continuous monitoring of the air quality inside the spacecraft. For this scope, among several different solutions, electronic noses have been considered. On behalf of European Space Agency an electronic nose specifically designed for air quality control in closed environment is under development. After several ground experiments concerning the monitoring of a biofilter efficiency, the instrument has been tested during the ENEIDE mission on board of the International Space Station. in this paper the instrument main concepts and its performance in ground and space experiments are illustrated.  相似文献   

18.
The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial populations. In deep space the duration of the mission, position in the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainities in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons: (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts: and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable.  相似文献   

19.
The low energy component of the cosmic radiation field is strongly modified by the shielding of the spacecraft and it is time and location dependent. Thermoluminescent lithium fluoride detectors have been applied to determine the radiation doses inside the ESA-Facility BIOPAN. The BIOPAN facility was mounted outside and launched on a Foton spacecraft and opened to space to allow exposure of several experiments to open space. Standard TLD-600. TLD-700 chips, two layers MTS-Ns sintered pellets with different effective thickness of the sensitive layer and MTS-N of different thickness have been exposed with different shielding thicknesses in front of them. The measured TL signal in the 0.1 mm thick detector just shielded by an aluminised Kapton foil of 25 microm thickness in front yielded a dose of 29.8 Gy (calibrated with 137Cs gamma rays) for an exposure time of 12.7 days: after 2.5 g.cm(-2) shielding the doses dropped to 3 mGy. The monitoring of radiation doses and its depth dose distribution outside the spacecraft are of great interest for radiation protection of astronauts working in open space. The knowledge of depth-dose distribution is a prerequisite to determine the organ doses an astronaut will receive during an extravehicular activity (EVA). The BIOPAN experiments are to be continued in the future.  相似文献   

20.
Future X-ray observatories in space, such as European Space Agency's (ESA) X-ray evolving universe spectroscopy (XEUS) mission, will require cooling to the region 10–100 mK to enable the utilisation of advanced cryogenic photon detectors in cryogenic spectrometer instruments. Such missions are envisaged to be completely cryogen-free, replacing the traditional superfluid liquid helium cryostat with a space worthy mechanically cooled system. As part of the Mullard Space Science Laboratory's (MSSL) adiabatic demagnetisation refrigerator (ADR) development programme, we have investigated the construction of a flight cryostat containing a 10 mK ADR (the MSSL double ADR (dADR)) that can be cooled by a single Astrium (formally Matra Marconi Space (MMS)) 4 K mechanical cooler. A proto-type dADR has been constructed and will be flight proven as part of a sounding rocket payload, where the dADR system will be used to cool an array of superconducting tunnel junction (STJ) detectors at the focus of an X-ray telescope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号