首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An oscillating droplet method combined with electromagnetic levitation technique has been applied to determine the surface tensions of liquid pure iron, nickel and iron-nickel alloys as a function of the temperature. The natural frequency of the oscillating droplet is evaluated using a Fourier analyser. The theoretical background of this method and the experimental set-up were described, and the influence of magnetic field strength was also discussed. The experimental results were compared with those of other investigators and interpreted using theoretical models (Butler's equation, subregular and perfect solution model for the surface phase).  相似文献   

2.
In the present work, the interfacial tensions of Fe-Ni alloys in contact with slags of the CaO-Al2O3-SiO2 system were measured at 1550 °C. Nickel additions to the alloy were found to decrease interfacial tension. The effects of alumina and titania additions to the slag on the interfacial tension of the Fe-20 wt pct Ni alloy were determined: alumina was found to increase the interfacial tension by a small amount, while titania was found to decrease it drastically. Using the present interfacial tension data for the CaO-Al2O3-SiO2 system and the ones measured by Jimbo and Cramb, Girifalco and Good’s interaction coefficient (ϕ) was determined as a function of the slag composition using regression analysis and was found to be a useful means of correlating interfacial tension data. The interfacial tension of an Fe-20 wt pct Ni-2.39 wt pct Al alloy in contact with a CaO-Al2O3-SiO2 slag was found to decrease drastically in the first 60 to 75 minutes of the experiment due to the dynamic effects of mass transfer. Slight lowering of interfacial tensions of industrial stainless steels due to sulfur transfer from liquid metal to slag was also observed. The equilibrium interfacial tensions of type 304 stainless steels were found to be more dependent on the slag chemistry than on the nickel and chromium content of the alloy. Formerly Graduate Student, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA  相似文献   

3.
Thermodynamic analysis of the oxygen solutions in zirconium-containing iron-nickel melts is carried out. The equilibrium deoxidation constants of the melts by zirconium, the activity coefficients at infinite dilution, and the interaction parameters in melts of various compositions are determined. The dependences of the oxygen solubility in the melts on the nickel or zirconium content are calculated. Zirconium is shown to possess a very high deoxidizing capacity in iron-nickel alloys. The zirconium contents at the minima in oxygen solubility curves and the corresponding minimum oxygen concentrations are determined. As the nickel content in a melt increases to ∼45%, the deoxidizing capacity of zirconium decreases and, then, increases. The deoxidizing capacity of zirconium in pure nickel is noticeably higher than that in pure iron.  相似文献   

4.
The densities of three Ni-based superalloys have been measured in both liquid and mushy states by both a modified sessile drop method (MSDM) and a modified pycnometric method (MPM) for alloys CMSX-4 and CM186LC, and for CMSX-10 alloy by MSDM only. The surface tensions of liquid CMSX-4, CM186LC, and CMSX-10 superalloys were measured using the sessile drop method. All measurements were carried out in a highly purified argon atmosphere with the oxygen partial pressure of less than 10−19 MPa in the gas outlet. The densities of all superalloys in both liquid and mushy states were found to decrease with increasing temperature. The volume thermal expansion of each superalloy in the mushy state was found to be higher than that in the liquid state. The densities determined by different methods have been critically assessed and recommended values in both liquid and mushy states are given as a linear function of temperature for the three Ni-based superalloys. The surface tension of liquid CMSX-4 superalloy was found to decrease with increasing temperature, while that of liquid CMSX-10 superalloy increases with increasing temperature. The wetting behavior of liquid CM186LC on the alumina substrate was found (1) to differ significantly from that of CMSX-4 and CMSX-10 and (2) to vary with time. A HfO2-rich layer was found in the contact area of CM186LC with the alumina substrate, which could lead to some uncertainty in the value obtained for the surface tension determined for CM186LC.  相似文献   

5.
A novel experimental technique for the measurement of surface tension of molten metals has been developed. It is based on the Rayleigh equation which relates frequency and surface tension for an oscillating drop. A systematic study has shown this equation to be valid for a liquid metal droplet levitated electromagnetically in an inert flowing gas with no prior calibration required. It is, therefore, an absolute method. The frequencies of oscillation of droplets of pure iron and nickel in a 6 pct H2-He gas mixture were measured by high speed cinematography. Surface tensions were obtained for temperatures of 1550° to 1780°C for iron and 1475° to 1650°C for nickel. M. E. FRAZER, Formerly Graduate Student, Department of Metallurgy and Materials Science, McMaster University, Hamilton, Ontario, Canada.  相似文献   

6.
The deoxidation equilibrium for Al in Ni-Fe alloys was studied in the equilibrium experiments between CaO-Al2O3 slags and Fe-30, 50 and 70 % Ni alloys at 1873 K. By using the values for the first and second order interaction parameters between oxygen and nickel in liquid iron and those between oxygen and iron in liquid nickel, the effect of Ni on the activity coefficient of Al in liquid iron and that of Fe on the activity coefficient of Al in liquid nickel were determined in the whole composition range of Ni-Fe alloys. The oxygen contents in Ni-Fe alloys calculated by the iterative method based on pure iron were in good agreement with those based on pure nickel in the range of [% Al] < 0.03. From this fact, it was found that the Wagner's approximation relating to the multi-component solution was applicable to the deoxidation equilibrium in the whole composition range of Ni-Fe alloys in the restricted concentration of a deoxidizer.  相似文献   

7.
Thermodynamics of the oxygen solutions in Fe-Ni-Ti melts   总被引:1,自引:1,他引:0  
The oxygen solutions in Fe-Ni melts containing up to 3% titanium are analyzed thermodynamically. The results of the works that determined the fields of the oxide phases in iron and nickel deoxidized by titanium are generalized. The proposed calculation model is shown to adequately describe the titanium deoxidation of iron-nickel alloys. The deoxidizing capacity of titanium decreases as the nickel content in the melt increases to 40% and, then, increases sharply as the nickel content increases further. The oxygen solubility curves pass through a minimum, whose position changes from 0.5644% Ti for pure iron to 0.6332% Ti for pure nickel. The points of equilibrium between the TiO2, Ti3O5, and Ti2O3 oxide phases are determined for six alloy compositions at 1873 K. The titanium deoxidation of Fe-40% Ni melts is experimentally studied, and the calculated and experimental results are in good agreement.  相似文献   

8.
The constrained drop method is used to study the surface tension σ of the following melts at 1773–1923 K and p Ar = 0.1 MPa: nickel of various grades (with various oxygen contents), binary Ni-Al (Re) alloys, and a complex Ni-Re-(W, Mo, Co) alloy. The value of σ of liquid nickel is shown to decrease with increasing oxygen content in it. The additions of aluminum (6%) and rhenium (3–7%) to nickel in binary alloys weakly change its surface tension. Alloying elements (W, Mo, Co) in Ni-Re-(W, Mo, Co) alloys insignificantly affect σ of their melts.  相似文献   

9.
Thermodynamics of oxygen solutions in Fe-Ni-V melts   总被引:1,自引:1,他引:0  
The oxygen solutions in Fe-Ni melts with up to 5% V are analyzed thermodynamically. The results of the works in which the fields of the vanadium-deoxidized oxide phases in iron and nickel were determined are generalized. The thermodynamic model developed for the calculation of the deoxidation of iron-nickel alloys with vanadium is shown to be adequate. The deoxidizing capacity of vanadium decreases insignificantly as the nickel content in the melt increases to 20% and increases substantially as the nickel content increases further. The oxygen solubility curves pass through a minimum, whose position changes from 2.3192% V for pure iron to 0.7669% V for pure nickel. We determined the equilibrium point [V]* between the (Fe, Ni)V2O4 and V2O3 oxide phases for alloys of six compositions at 1873 K. In nickel, [V]* is almost 200 times lower than in iron. The deoxidation of the Fe-40% Ni melt with vanadium is studied experimentally, and the experimental results agree satisfactorily with the calculated data.  相似文献   

10.
11.
Thermodynamic models based on Butler's equation for surface tension of liquid alloys has been discussed. In alloys, in which activities of components deviate largely from Raoult's law, the calculated surface tensions are found to be affected by the selection of the ratio of the coordination number in the surface phase to that in the bulk phase. Then, the surface tension of liquid Fe-Al, Fe-Co, Fe-Cr, Fe-Mn, Fe-Mo, Fe-Ni, Fe-Si, Fe-Ti and Fe-W binary alloys and liquid Fe-Cr-Ni ternary alloys have been calculated from thermodynamic data in a database constructed by Kaufman. The calculated results reproduce the concentration dependence of the surface tension in those alloys reported so far, but their absolute values are dependent upon the selection of surface tension values for pure elements.  相似文献   

12.
This article presents a study of the surface tension and phosphorus surface segregation in Fe-P alloys. The surface tension was measured by the sessile drop technique. The result of the dynamic surface tension for the low phosphorus content alloys shows that the alloy surface vaporization has a clear effect on the surface tension and causes a positive surface tension temperature coefficient. However, from this article, it is evident that phosphorus in liquid iron acts as a surface active element similar to arsenic. The surface segregation was determined using Auger electron spectroscopy. The result on the surface analysis of as-solidified sample indicates that the adsorption of impurity elements, such as oxygen, carbon, and nitrogen, can conceal phosphorus segregation on the free surface. Phosphorus segregation was also examined in the samples as-cleaned by Ar+ and then treated 30 minutes at 650°C. Phosphorus was found to segregate extensively on the surface of the alloys. On the basis of the analysis of the published data, the surface active intensity sequence of some nonmetallic elements was arrayed, and the surface active intensity of fluorine and boron in liquid iron was estimated.  相似文献   

13.
An experimental investigation of the initial rates of oxygen dissolution in molten iron and some Fe-(≤9 pct Al), Fe-(≤6 pct Si), Fe-(≤1 pct Ti) and Fe-(≤1 pct V) alloys was carried out in pure oxygen. Two experimental techniques were employed in this study: a modified constant-volume Sieverts method and a falling droplet technique. It was found that the oxidation behavior of liquid iron-based alloys in gaseous pure oxygen as a function of alloy composition was similar under conditions of the falling droplet and modified constant volume Sieverts methods. Marked declines in the oxygen absorption rates were observed for Fe-Al and Fe-Si alloys when the initial alloy compositions reached 6 wt pct Al and 3 wt pct Si in iron, respectively. This behavior indicated a change in mode of oxidation from a burning to a passive type. Fe-Ti and Fe-V alloys initially containing up to 1 wt pct solute in iron exhibited only a burning type behavior. The sudden decline in oxygen absorption rate in molten iron-aluminum and iron-silicon alloys is discussed in terms of changes in the nature of the surface oxide film with increasing amounts of alloying element in the metal.  相似文献   

14.
In the present work, the change of the interfacial tension at the slag-metal interface for sulfur transfer between molten iron, slag, and gas phases was monitored by X-ray sessile drop method in dynamic mode in the temperature range of 1830 to 1891 K. The experiments were carried out with pure iron samples immersed partly or fully in the slag phase. The slag consisted of 30 wt pct CaO, 50 wt pct Al2O3, and 20 wt pct SiO2 (alumina saturated at the experimental temperatures) with additions of FeO. Metal and slag samples contained in alumina crucibles were exposed to a CO-CO2-SO2-Ar gas mixture with defined oxygen and sulfur partial pressures, and the change of the shape of the metal drop was determined as a function of time. The equipment and the technique were calibrated by measurements of the surface tensions of the pure Cu, Ni, and Fe containing two different amounts of dissolved oxygen. A theoretical model was developed to determine the sulfur content of the metal as a function of time on the basis of sulfur diffusion in the slag and metal phases as well as surface tension-induced flow on the metal drop surface. Attempts were made to compute the interfacial tensions on the basis of force balance. This article is based on a presentation made in the “Geoffrey Belton Memorial Symposium,” held in January 2000, in Sydney, Australia, under the joint sponsorship of ISS and TMS.  相似文献   

15.
The surface tensions of pure molten aluminum, A356 alloy (Al-7 pct Si-0.3 pct Mg), and strontium-modified A356 alloy have been measured under vacuum and hydrogen atmospheres using the sessile drop technique. The values obtained for pure aluminum at 680 °C and for A356 alloy and modified A356 alloy at 630 °C are 1.007, 0.889, and 0.844 N/m, respectively, when measured under vacuum. The addition of hydrogen gas to the atmosphere of the liquid droplet has no significant effect on the surface tension of the unmodified A356 alloy, while it lowers the surface tension of the modified alloy to 0.801 N/m. This effect is possibly due to the formation of SrH2.  相似文献   

16.
The objective of this study was to determine the conditions under which alumina can act as a heterogeneous nucleant to initiate the solidification of undercooled liquid iron. The undercooling of a pure iron sessile droplet in contact with Al2O3 substrates was measured under controlled oxygen partial pressures by observing droplet recalescence. The experimental results indicated that the undercooling of liquid iron, in contact with an Al2O3 substrate, did not have a unique value, varied from 0 °C to 290 °C, and was significantly affected by the oxygen content of the gas phase and the degree of interaction between the oxide and the metal. Deep undercoolings are possible at low oxygen potentials, provided the oxygen potential is such that substantial substrate decomposition does not occur. The measured undercooling was a strong function of gas phase oxygen content and a maximum in undercooling of 290 °C was measured at PO2=10−19 atm. The variation in undercooling was related to the wetting of the substrate by the liquid metal, where the deepest undercoolings occurred when the highest contact angle between the substrate and the liquid droplet was achieved.  相似文献   

17.
The surface tension of liquid Fe-Cr-O alloys has been determined by using the sessile drop method at 1823 K. It was found that the surface tension of liquid Fe-Cr-O alloy markedly decreases with oxygen content at constant chromium content, and the surface tension at a given oxygen content remains almost constant, regardless of the chromium content. When the surface tension of liquid Fe-Cr-O alloys is plotted as a function of oxygen activity, with an increase in the chromium content, the surface tension shows a much steeper decrease with respect to oxygen activity. The surface tension of liquid Fe-Cr-O alloys at 1823 K is given as follows: σ=1842-279 ln (1+K O a O). Here, assuming a Langmuir-type adsorption isotherm, the adsorption coefficient of oxygen, K O(Fe-Cr), as a function of chromium content, was shown to be K O=140+4.2 × [wt pct Cr]+1.14 × [wt pct Cr]2.  相似文献   

18.
An experimental investigation of the rates of oxygen solution in molten cobalt, copper, iron and nickel was carried out using pure oxygen and a constant-volume Sieverts’ method. It was found that the volume of gaseous oxygen which initially reacted with the inductively stirred metals was strongly dependent on the physical nature of the oxide film which formed during the first stage of reaction. The initial temperature of the molten iron, cobalt, and nickel was 1600°C, and for copper was 1250°C. For initial oxygen pressures above the melt of about one atmosphere both molten iron and copper, which formed liquid surface oxides, initially absorbed nearly 20 cm3 (STP) O2/cm2 of melt surface area, while molten cobalt and nickel, which formed solid oxides, absorbed about 6 cm3 (STP) O2/cm2 under the same experimental conditions. For approximately 30 s after the initial reaction between these liquid metals and gaseous oxygen, the oxygen absorption rate was proportional to the square root of the oxygen pressure above the melt, and proportional to the melt surface area, but independent of melt volume. The rate-limiting step for oxygen absorption by liquid iron, cobalt and copper can be described by dissociative adsorption of oxygen molecules at the gas/oxide interface. After 30 s of reaction, the rate of oxygen absorption became less dependent on the oxygen pressure above the melt. This indicated that the rate-controlling step was changing from a surface reaction to growth of the oxide layer by cationic diffusion in the bulk oxide. The oxidation rate of liquid nickel appears to be too complex to be described by models for dissociative adsorption of oxygen molecules at the gas/oxide interface and parabolic growth of the oxide layer. The formation of a thin layer of nickel oxide which allows oxygen to migrate through cracks or grain boundaries may be responsible for the relatively high oxygen absorption rate compared to that of liquid cobalt. R. H. RADZILOWSKI, formerly a Graduate Studient at The University of Michigan  相似文献   

19.
The aim of the current research is the experimental investigation of the mass median particle size d50 as a function of surface tension for liquid Cr–Mn–Ni steel alloy with 16% Cr, 7% Mn, and 9% Ni. To modify the liquid steel design sulfur was add to the Cr–Mn–Ni steel in five steps up to a 1000 mass ppm. The surface tension of the liquid steel alloy was measured using maximum bubble pressure method and yttria stabilized capillary in a temperature range from 1701 to 1881 K. In addition, the same steel charges were sprayed to steel powder using a vacuum inert gas atomization using pure argon gas. The increase of sulfur in Cr–Mn–Ni steel will decrease the surface tension to 0.91 N m?1. The temperature coefficient of surface tension is positive for all investigated Cr–Mn–Ni alloys due to a sulfur content ≥100 mass ppm. The final mass median particle size d50 decreases from 54.3 µm for AISI 304 reference steel alloy to 17.1 µm for Cr–Mn–Ni steel alloy (16‐7‐9 S10) with the highest sulfur content and the lowest surface tension of all investigated liquid steels. It is concluded from the present work that surface tension is the decisive factor in adjusting d50 at a constant spraying parameters.  相似文献   

20.
A Knudsen cell-mass spectrometer combination was used to determine the activities of iron and nickel in solid and liquid iron-nickel alloys in the temperature range 1500 to 1900 K. This has provided thermodynamic data which are consistent in both the solid and liquid regions. The δHM@#@ values obtained are in fair agreement with calorimetric data. A subregular model gives a good representation of the thermodynamic properties of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号