首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Glass transition temperature (Tg) is crucial in determining application areas of high temperature shape memory polymers (SMPs), but some Tgs are difficult or uneconomic to be obtained. Here we introduce a facile way to prepare high temperature SMPs with controllable Tgs from 183 to 230 °C by copolymerization of polyimides, and relationships between Tgs and diamine components of the shape memory copolyimides agree with Fox Equation. These copolyimides can fix temporary shape and return to original shape nicely, and the possible mechanisms of their high shape fixity and shape recovery are analyzed on the basis of thermomechanical properties and molecular structures. The copolymerization of shape memory polyimides has offered an effective way to obtain high temperature SMPs with desired properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44902.  相似文献   

2.
Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al2O3‐ or silica‐filled silicone membrane. It was observed that the silicone membranes, particularly the silica‐filled membrane, reduced the rate of water absorption (37°C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41226.  相似文献   

3.
We synthesized series of shape memory polyurethanes with amorphous reversible phase (Tg‐SMPUs) and systematically studied their microphase structure and shape memory properties. The Tg‐SMPUs having no or less hard phase showed lower shape recovery. When the volume fraction of hard phase was in the range of 20–30%, the Tg‐SMPUs exhibited the highest shape recovery. As the fraction of hard phase increased further the shape recovery decreased, because more polymer components with higher glass transition temperatures (Tgs) would participate in strain storage. For the Tg‐SMPUs having similar Tgs, those polymers having higher volume fraction of hard phase exhibited higher shape fixity, broader shape recovery region, and larger recovery stress. Increasing deformation strain could raise shape fixity and recovery stress but broaden shape recovery region. The highest recovery stress of a material could be achieved when the deformation occurred at its glass transition temperature below which decreasing deformation temperature could not increase recovery stress further. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

4.
Shape memory polymers (SMPs) can keep a temporary state and subsequently recover to the original shape through a prescribed thermomechanical process. Although different theoretical models have been presented, the viscous effects were seldom considered. This article aims to provide an insight into the viscoelastic property of SMPs and its effect on the functional realization. Systematic thermomechanical experiments were performed. Special considerations were focused on the viscoelastic response of SMPs in the vicinity of the glass transition temperature Tg. The relations between shape switching transition temperature Ttran and Tg were also discussed. The results confirm that Ttran departs from Tg due to the viscoelastic effect and does not keep a constant value during heating and cooling processes. The viscoelastic effect reaches to maximum value at Tg, then decreases slowly at cooling and quickly at heating. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Shape memory polymers (SMPs) are an emerging class of active polymers that may be used for a range of reconfigurable structures. In this study, the thermomechanical and shape memory behavior of a thermosetting SMP was investigated using large‐scale compressive tests and small‐scale indentation tests. Results show that the SMP exhibits different deformation modes and mechanical properties in compression than in tension. In glassy state, the SMP displays significant plastic deformation and has a much higher modulus and yield strength in comparison to those obtained in tension. In rubbery state, the SMP behaves like a hyperelastic material and again has a much higher modulus than that obtained in tension. The SMPs were further conditioned separately in simulated service environments relevant to Air Force missions, namely, (1) exposure to UV radiation, (2) immersion in jet‐oil, and (3) immersion in water. The thermomechanical and shape recovery properties of the original and conditioned SMPs were examined under compression. Results show that all the conditioned SMPs exhibit a decrease in Tg as compared to the original SMP. Environmental conditionings generally result in higher moduli and yield strength of the SMPs in the glassy state but lower modulus in the rubbery state. In particular, the UV exposure and water immersion, also weaken the shape recovery abilities of the SMPs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, to form amorphous networks with very uniform supermolecular structures, which can be used as photo‐thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N′,N′‐tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3‐butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34–153°C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above Tg. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

7.
The purpose of this study was to characterize the partial strain recovery of a thermoset shape‐memory polymer under a constraining stress. Three polymer networks were synthesized from tert‐butyl acrylate and poly(ethylene glycol) dimethacrylate (PEGDMA) solutions. The molecular weight and the weight fraction of the PEGDMA crosslinking monomer was altered systematically to maintain a constant glass transition temperature (Tg = 54°C) but tailorable rubbery moduli, which varied by almost an order of magnitude for the three polymer networks (E = 1.8–11.3°MPa). The shape‐recovery behavior of the polymers under a constraining stress was characterized for programming temperature below (20°C) and above (70°C) the Tg. The experiments revealed a peak in the recovered strain for samples programmed at 20°C. Recovered strain scaled linearly with the constraining stress by the rubbery modulus. The work performed by the shape‐memory polymer networks was observed to be primarily a function of constraining stress and crosslinking density, while programming temperature had a relatively mild influence; however, the efficiency of the shape‐memory effect was shown to be a function of constraining stress and programming temperature, but was independent of crosslinking density. Maximum work efficiencies (up to 45%) were observed for programming temperature of 70°C. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
To widen the type and scope of use of shape memory polymers (SMPs), we added hindered phenol (AO-80) to nitrile–butadiene rubber (NBR) to gain a group of AO-80/NBR rubber composites. The glass transition temperature (Tg), structure, mechanical properties, and shape memory properties of the AO-80/NBR rubber composites were characterized. It was concluded that the dispersion of AO-80 in the NBR matrix was homogeneous and intra-molecular hydrogen bonds were formed between the hydroxyl groups ( OH) of AO-80 and the cyano groups ( CN) of NBR molecular chain. The dosage of AO-80 added could be changed to tune the Tg. AO-80/NBR rubber composites revealed outstanding shape fixity and shape recovery. The method for tuning the Tg of AO-80/NBR rubber composites will provide an idea for the fabrication and design of new SMPs. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48911.  相似文献   

9.
Lignin‐based thermal responsive dual shape memory copolymeric elastomers were prepared with a highly branched prepolymer (HBP, A2B3 type) via a simple one‐pot bulk polycondensation reaction. The effect of fractionated lignin type (with good miscibility in the HBP) on copolymer properties was investigated. The thermal and mechanical properties of the copolymers were characterized by DMA, DSC, and TGA. Tensile properties were dominated by HBP <45% lignin content while lignin dominated >45% content. The copolymers glass transition temperature (Tg) increased with lignin content and lignin type did not play a significant role. Thermally stimulated dual shape memory effects (SME) of the copolymers were quantified by cyclic thermomechanical tests. All copolymers had shape fixity rate >95% and >90% shape recovery for all compositions. The copolymer shape memory transition temperature (Ttrans) increased with lignin content and Ttrans was 20°C higher than Tg. Lignin, a renewable resource, can be used as a netpoint segment in polymer systems with SME behavior. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41389.  相似文献   

10.
This study clarifies and quantifies factors which increase the ductility of a low-molecular-weight propylene homopolymer having an intrinsic viscosity of 0.89 dl/g. The tensile behavior of homopolymer/ethylene-propylene rubber (EPR) blends was studied from the viewpoint of the associated molecular structure of EPR and its compatibility with the homopolymer. When EPR is “dissolved” in a homopolymer, the glass transition temperature (Tg) of the amorphous phase of a homopolymer was found to shift to a lower temperature, with homopolymer/EPR compatibility being subsequently evaluated using this shift, i.e., Δtg. Results show two conditions are required to improve the ductility of the low-molecular weight propylene homopolymer: ΔTg must be ≥ 3°C and ≥ 30 wt% EPR must be blended with the homopolymer.  相似文献   

11.
This work describes the synthesis and comparative shape memory properties of cross-linked networks derived from epoxy and cyanate ester monomers containing polyether oligomers as reactive shape memory segments. The hydroxy telechelic oligomers viz. polyethyleneglycol (PEG), polypropyleneglycol (PPG), and polytetramethyleneglycol (PTG) are reacted with epoxy–cyanate ester matrix resulting in shape memory polymers with high transition temperatures. The soft oligomer segments act as flexible linker unit which interconnect oxazolidone, isocyanurate and triazine ring structures in the cross-linked polymer. The resultant cyclomatrix SMPs exhibit high transition temperatures 132, 178 and 161 °C respectively for PEG, PPG and PTG integrated SMPs. The Eg/Er ratios are increased in the order PEG < PTG < PPG. The PTG and PPG based SMPs show shape retention of 99% and shape recovery of >98% with recovery time <100 s. All the SMPs display good thermal stabilities (both inert and oxidative) above 275 °C.  相似文献   

12.
A computerized and automated torsional pendulum has been used to characterize amorphous poly(methyl methacrylates) at about 1 Hz in the temperature sequence 473° → 93° → 473°K. The effects of thermal prehistory, temperature cycling, water content, and tacticity are demonstrated. In particular, a comparison of the out-of-phase shear modulus (G″) versus temperature for “syndiotactic,” “atactic,” and “isotactic” polymer specimens shows that the intensity of the glassy-state β loss peak decreases with increasing isotactic content while the temperature of its location remains the same. Extrapolation suggests that completely isotactic polymer would not display a β loss peak. The shape and location of the G″ data at low temperatures indicate that the basic mechanism of the β process is the same for the three polymer samples and support the validity of the extrapolation. The effect of tacticity is reflected also in the glass transition region; the isotactic sample has its Tg about 65°C lower with greater intensity than the syndiotactic polymer.  相似文献   

13.
We investigated organogel formation in dispersions of CW in safflower oil (SFO). Candelilla wax (CW) has as its main component hentriacontane (78.9%), a n-alkane with self assembly properties in organic solvents (i.e., vegetable oils). Results showed that, independent of the cooling rate (i.e., 1 °C/min and 10 °C/min) and gel setting temperature (T set), the CW organogels observed a thermoreversible behavior. This was evaluated by the behavior of thermal parameters that characterized organogel formation (gelation temperature, T g; heat of gelation, ΔHg) and melting (melting temperature, T p; heat of melting, ΔHM) after two heating-cooling cycles. For a given CW concentration (i.e., 0.5, 1.0, and 3%), the magnitude of ΔHM and T p and the structural organization of the organogel, depended on the cooling rate, the thermodynamic drive force for gelation, and the annealing process occurring at high Tset (i.e., 25 °C). At T set of 25 °C the microplatelet units that formed the organogel aggregated as a function of storage time, a process that resulted in an increase in organogel hardness. In contrast, at T set of 5 °C annealing occurred in a limited extent, but gels had higher solid fat content and microplatelet units of a smaller size than the gels obtained at 25 °C. The result was a three-dimensional network with greater hardness than the one obtained at 25 °C. The 3% CW organogels showed no phase separation up to 3 months at room temperature, with textures of potential use by the food industry.  相似文献   

14.
The relationship between the shape memory properties and thermomechanical cyclic conditions was investigated with a type of shape memory polyurethane (SMPU). The thermal and dynamic mechanical properties of the polyurethane were examined by using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). It was found that the SMPU exhibited good shape memory effects (SMEs) at deformation temperatures ranging from Tg to Tg + 25 °C. The strain recovery ratios increased with the increase of deformation speed and with the decrease in maximum strain. The recovery ratios also increased with increasing fixing speed. Therefore, in practical applications, in order to obtain better SMEs, the SMPU should be cooled to its frozen state as soon as possible after being deformed at a high temperature. The ‘fixity’ dramatically increased with the decrease in fixing temperature. To obtain optimal SMEs, the polymer has to be reheated up to the temperature at which the polymer deformed. In addition, the recovery ratios of the SMPU could increase slightly with the increase of recovery time. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Depending upon the fiber material, some of the experimental variables can have a profound effect on the dynamic tensile modulus vs. temperature data. With the use of an experimental fiber (25°C < Tg < 75°C; Tm > 220°C; hot stretched), the effect of several variables, e.g., moisture/volatiles, annealing/relaxation, frequency (strain rate), pretension, and % strain on the modulus retention term [(E100°C/E25°C) × 100] have been studied. Of these variables, pretension and especially % strain dramatically increase the modulus retention and this effect is attributed to the elastic orientation under force (EOF), i.e., it exists only in the presence of tensile forces and is reversible. Such an effect was insignificant for Kevlar (Tg ? 375°C) and absent for steel wire. Dynamic modulus measurements at 25°C using sonic techniques also support the EOF phenomenon in polyethylene yarns (Tg ~ ?30°C) but not in Kevlar polymide yarns (Tg ~ 375°C).  相似文献   

16.
A series of biodegradable poly(L ‐lactide‐co‐?‐caprolactone) (PCLA) copolymers with different chemical compositions are synthesized and characterized. The mechanical properties and shape‐memory behaviors of PCLA copolymers are studied. The mechanical properties are significantly affected by the copolymer compositions. With the ?‐caprolactone (?‐CL) content increasing, the tensile strength of copolymers decreases linearly and the elongation at break increases gradually. By means of adjusting the compositions, the copolymers exhibit excellent shape‐memory effects with shape‐recovery and shape‐retention rate exceeding 95%. The effects of composition, deformation strain, and the stretching conditions on the recovery stress are also investigated systematically. A maximum recovery stress around 6.2 MPa can be obtained at stretching at Tg ? 15°C to 200% deformation strain for the PCLA70 copolymer. The degradation results show that the copolymers with higher ?‐CL content have faster degradation rates and shape‐recovery rates, meanwhile, the recovery stress can maintain a relative high value after 30 days in vitro degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   

18.
The effect of cure history on the dynamic thermomechanical properties of a high temperature curing epoxy resin has been studied using torsional braid analysis. In isothermal cures “full cure” is not possible except at temperatures above the maximum glass transition temperature (Tg) of the cured resin, hence the necessity of a “post-cure” after lower temperature isothermal cures. The highest Tg and maximum cross-linking in the cured resin was for a linear heating rate of 0.05°C/min from 30 to 200°C; higher heating rates lead to lower glass transition temperatures.  相似文献   

19.
Understanding the relationship between the number‐average molecular weight (Mn) and the shape memory behavior of polymers is crucial for a complete picture of their thermomechanical properties, and hence for the development of smart materials, and, in particular, in textile technology. We report here on the study of shape memory properties as a function of Mn of polymers. Shape memory polyurethanes (SMPUs) of different Mn were synthesized, with various catalyst contents or molar ratio(r = NCO/OH) in the composition. In particular, two types of SMPU, namely Tm and Tg types according to their switch temperature type, were synthesized to compare the influence of Mn on their shape memory behavior. X‐ray diffraction, differential scanning calorimetry, dynamic mechanical analysis, and shape memory behavior results for the SMPUs are presented. The results indicate that the melting temperature (Tm), the glass transition temperature (Tg), the crystallinity, and the crystallizability of the soft segment in SMPUs are influenced significantly by Mn, before reaching a critical limit around 200 000 g mol?1. Characterization of the shape memory effect in PU films suggests that the Tm‐type films generally show higher shape fixities than the Tg‐type films. In addition, this shape fixity decreases with increasing Mn in the Tg‐type SMPU, but the shape recovery increases with Mn in both types of SMPU. The shape recovery temperature, in contrast, decreases with Mn as suggested by the result of their thermal strain recovery. It is concluded that a higher molecular weight (Mn > 200 000 g mol?1) is a prerequisite for SMPUs to exhibit higher shape recovery at a particular temperature. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
The relationship between cohesive energy (c.e.) or cohesive energy density (c.e.d.) and the glass transition tenperature (Tg) of polymers has been re-examined on the basis of literature data. For polymers with Tg above 25°C., there is no correlation between published or calculated values of c.e. or c.e.d. and Tg. However, for the rest of the polymers there is a linear relationship between c.e.d. and Tg, and a broad relationship between c.e. and Tg. These results imply that c.e.d. is the regulating, though not the only, factor in determining Tg's up to values of approximately 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号