首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical reinforcement of nanocomposites containing nanorods‐like fillers such as cellulose nanocrystals (CNCs) is often interpreted by adapting the classical parallel–series model, assuming a simple hyperbolic dependence between the percolation threshold and aspect ratio. However, such assumptions are valid only for nanorods with high aspect ratio and often are misinterpreting the reinforcement obtained at low volume fraction of filler loading. To elucidate this intriguing scenario, we proposed a new approach and validated it by compiling and reinterpreting some of available literature that represent the experimental reinforcement with CNCs. Our approach showed better accuracy, specifically for the cases of CNC nanorods with lower aspect ratio. We conclude that this route permits a more realistic evaluation of the mechanical reinforcement, where a physical parameter accounting the polymer filler association is introduced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45254.  相似文献   

2.
The fabrication of nanocomposites of polyamide 12 (PA12) and cellulose nanocrystals (CNCs) isolated from cotton and tunicates is reported. Through a comparative study that involved solution‐cast (SC) and melt‐processed materials, it was shown that PA12/CNC nanocomposites can be prepared in a process that appears to be readily scalable to an industrial level. The results demonstrate that CNCs isolated from the biomass by phosphoric acid hydrolysis display both a sufficiently high thermal stability to permit melt processing with PA12, and a high compatibility with this polymer to allow the formation of nanocomposites in which the CNCs are well dispersed. Thus, PA12/CNC nanocomposites prepared by melt‐mixing the two components in a co‐rotating roller blade mixer and subsequent compression molding display mechanical properties that are comparable to those of SC reference materials. Young's modulus and maximum stress could be doubled in comparison to the neat PA12 by introduction of 10% (CNCs from tunicates) or 15% w/w (CNCs from cotton) CNCs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42752.  相似文献   

3.
The morphological evolution of ethylene–vinyl alcohol copolymer (EVOH) and its effect on the gas‐barrier properties of high‐density polyethylene (HDPE) were investigated. HDPE/EVOH blends were prepared through a multistage stretching extrusion, which combined an assembly of force‐assembling elements (FAEs) with an extruder. Scanning electron microscopy confirmed that with an increasing number of FAEs, the biaxial‐stretching field existing in each FAE transformed the dispersed EVOH phase into well‐defined platelets along the flowing plane. Dynamic rheological results further revealed that the formation of the platelets enlarged the interfaces between the dispersed barrier phase and the matrix; this not only led to the decline of the complex viscosity but also created more tortuous paths for the diffusion of gas molecules. Compared with that of the non‐FAE specimen blended with 25 wt % EVOH, the oxygen permeability coefficient decreased more than one order of magnitude when one FAE was applied. The structural model for permeability indicated that the enhanced barrier resulted from the increased tortuosity of the diffusion pathway, which was provided by the aligned high‐aspect‐ratio platelets. Compared with the previous biaxial‐stretching method, multistage stretching extrusion provided a simple and economical way to generate a laminar structure of the dispersed phase in the matrix phase without the application of an external stretching force. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40221.  相似文献   

4.
Composites of linear low‐density poly(ethylene‐co‐butene) (PE) or maleated linear low‐density poly (ethylene‐co‐butene) (M‐PE) and cellulose (CEL), cellulose acetate (CA), cellulose acetate propionate (CAP), or cellulose acetate butyrate (CAB) were prepared in an internal laboratory mixer with 20 wt % polysaccharide. The structure and properties of the composites were studied with tensile testing, dynamic mechanical thermal analysis, differential scanning calorimetry, extraction with a selective solvent, Raman spectroscopy, and X‐ray diffraction. Composites prepared with M‐PE presented yield stress and elongation values higher than those of composites prepared with PE, showing the compatibilizer effect of maleic anhydride. Dynamic mechanical thermal analysis performed for M‐PE–CEL, M‐PE–CA, M‐PE–CAP, and M‐PE–CAB composites showed one glass‐transition temperature (Tg) close to that observed for pure M‐PE, and for M‐PE–CAP, another Tg lower than that measured for the polysaccharide was observed, indicating partial mutual solubility. These findings were confirmed by the extraction of one phase with a selective solvent, gravimetry, and Raman spectroscopy. X‐ray diffraction showed that the addition of CEL, CA, CAP, or CAB had no influence on the lattice constants of PE or M‐PE, but the introduction of the reinforcing material increased the amorphous region. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:402–411, 2007  相似文献   

5.
Poly(lactic acid) (PLA)‐rich poly(lactic acid)/poly(ε‐caprolactone) (PLA/PCL) blends were melt‐blended at different compositions. The compositions such as 90/10 and 80/20 were obtained using three different blending methods and processed by injection molding and hot pressing. All blends were immiscible. The crystallinity of PLA increased slightly in the presence of poly(ε‐caprolactone) (PCL), and the PCL exhibited fractionated crystallization in the presence of PLA. Injection molded specimens, compared with hot pressed specimens, presented much smaller PCL particles regardless of the blending method used. Some interfacial adhesion was observed in all cases. The stiffness of PLA/PCL blends decreased as the PCL content was increased and was independent of processing. Injection molded specimens showed ductile behavior and broke at elongation values close to 140%, while the elongation at break of the hot pressed specimens was clearly lower, most likely due to the larger size of the PCL particles. Although the impact strength of the blends remained low, it improved by approximately 200% with 30% PCL and by 350% with 40% PCL. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42641.  相似文献   

6.
The surface of ramie cellulose whiskers has been chemically modified by grafting organic acid chlorides presenting different lengths of the aliphatic chain by an esterification reaction. The occurrence of the chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies, elemental analysis and contact angle measurements. The crystallinity of the particles was not altered by the chain grafting, but it was shown that covalently grafted chains were able to crystallize at the cellulose surface when using C18. Both unmodified and functionalized nanoparticles were extruded with low density polyethylene to prepare nanocomposite materials. The homogeneity of the ensuing nanocomposites was found to increase with the length of the grafted chains. The thermomechanical properties of processed nanocomposites were studied by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and tensile tests. A significant improvement in terms of elongation at break was observed when sufficiently long chains were grafted on the surface of the nanoparticles. It was ascribed to improved dispersion of the nanoparticles within the LDPE matrix.  相似文献   

7.
We used three kinds of alkyl diallyl ammonium salts (methyl, ethyl, and propyl) in combination with dimethyloldihydroxyethyleneurea (DMDHEU) as crosslinking agents. The nitrogen content, dry crease recovery angle (DCRA), moisture regain, and wicking height for the DMDHEU/alkyl diallyl ammonium salts were in the order of ? CH3 > ? C2H5 > ? C3H7, but the wet crease recovery angle (WCRA) and tensile strength retention (TSR) were in the opposite order at the same resin concentration. For the same DCRA and TSR, the WCRA values for only DMDHEU were lower than those for DMDHEU/alkyl diallyl ammonium salts, and the WCRA values for DMDHEU/alkyl diallyl ammonium salts were in the order of ? C3H7 > ? C2H5 > ? CH3. Both the ? OH group of the cellulose and DMDHEU could react with the vinyl or epoxy groups of the alkyl diallyl ammonium salts during the pad–dry–cure process. The surface migration for DMDHEU/alkyl diallyl ammonium salts was in the order of ? CH3 > ? C2H5 > ? C3H7. Fabrics treated with DMDHEU/alkyl diallyl ammonium salts showed good antibacterial properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1662–1669, 2003  相似文献   

8.
Triacetyl cellulose (TAC) films, which are currently produced mainly from cotton linter, are widely used for liquid crystalline display (LCD) applications. However, cotton linter is an expensive source of cellulose and the environmental load related with cotton cultivation is notoriously heavy. Herein, the replacement of cotton linter by wood pulp was systematically investigated to explore the possibility of TAC production using a less expensive source. The mechanical and thermal properties of TAC films made from wood (wTAC) were outstanding compared to those of TAC films made from cotton (cTAC). The optical transparency of wTAC was also excellent. While Tinuvin (a UV stabilizer) produced more isotropic structures in cTAC films, it produced more anisotropic structures in wTAC films. Overall, the optical films of wTAC showed good performance for LCD applications, comparable to that of cTAC. These results could be used to develop more environmentally friendly production methods for optical TAC films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42146.  相似文献   

9.
Microporous cellulose membranes were prepared from novel cellulose/aqueous sodium hydroxide solutions by coagulation with aqueous H2SO4 solutions. The free and glass‐contacting surface morphology of the microporous cellulose membranes showed an asymmetric porous structure. The morphological structure, tensile properties, and permeability of the microporous cellulose membranes could be controlled by changes in the coagulation conditions such as the coagulant concentration and the coagulation time. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 920–926, 2006  相似文献   

10.
In this investigation, carboxymethyl cellulose (CMC)‐reinforced poly(vinyl alcohol) (PVA) were prepared with trimethylol melamine as a chemical crosslinker. The structure and property of hydrogels were measured by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), texture analysis, and rheometry. The FTIR spectra demonstrated that the etherification reaction successfully occurred in the PVA–CMC hydrogels, and the SEM figures exhibited the homogeneous porous structure of the CMC–PVA hydrogels. The compression strength of the PVA–CMC hydrogels was 15 times higher than that of the PVA hydrogels. Moreover, the PVA–CMC hydrogels exhibited a higher storage modulus than that of the PVA hydrogels; this illustrated better elasticity for the PVA–CMC hydrogels. As a result, CMC‐modified PVA hydrogels with high mechanical behavior will broaden the potential applications of hydrogels, such as in wound dressings, facial masks, and skin‐protection layers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44590.  相似文献   

11.
The results of this work relate to the use of co‐extrusion technology in the preparation of monocomposite pellets. The low‐melting polypropylene copolymer was used as a matrix material. The high strength polypropylene fibers were used as a fibrous reinforcement. Research confirms the possibility to produce the pellets with fibrous structure. The prepared composite material in the form of pellets was processed and shaped using the injection molding technology. Obtained samples were subjected to mechanical testing in the static tensile test and dynamic mechanical analysis. Research complements microscopic observation of scanning electron microscopy. The measurement results confirm the reinforcing effect of the fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41180.  相似文献   

12.
Biodegradable starch‐polyester polymer composites are useful in many applications ranging from numerous packaging end‐uses to tissue engineering. However the amount of starch that can form composites with polyesters without significant property deterioration is typically less than 25% because of thermodynamic immiscibility between the two polymers. We have developed a reactive extrusion process in which high amounts of starch (approx. 40 wt%) can be blended with a biodegradable polyester (polycaprolactone, PCL) resulting in tough nanocomposite blends with elongational properties approaching that of 100% PCL. We hypothesize that starch was oxidized and then crosslinked with PCL in the presence of an oxidizing/crosslinking agent and modified montmorillonite (MMT) organoclay, thus compatibilizing the two polymers. Starch, PCL, plasticizer, MMT organoclay, oxidizing/crosslinking agent and catalysts were extruded in a co‐rotating twin‐screw extruder and injection molded at 120° C. Elongational properties of reactively extruded starch‐PCL nanocomposite blends approached that of 100% PCL at 3 and 6 wt% organoclay. Strength and modulus remained the same as starch‐PCL composites prepared from simple physical mixing without any crosslinking. X‐ray diffraction results showed mainly intercalated flocculated behavior of clay at 1,3,6, and 9wt% organoclay. Scanning electron microscopy (SEM) showed that there was improved starch‐PCL interfacial adhesion in reactively extruded blends with crosslinking than in starch‐PCL composites without crosslinking. Dynamic mechanical analysis showed changes in primary α‐transition temperatures for both the starch and PCL fractions, reflecting crosslinking changes in the nanocomposite blends at different organoclay contents. Also starch‐polytetramethylene adipate‐co‐terephthalate (PAT) blends prepared by the above reactive extrusion process showed the same trend of elongational properties approaching that of 100% PAT. The reactive extrusion concept can be extended to other starch‐PCL like polymer blends with polymers like polyvinyl alcohol on one side and polybutylene succinate, polyhydroxy butyrate‐valerate and polylactic acid on the other to create cheap, novel and compatible biodegradable polymer blends with increased toughness. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1072–1082, 2005  相似文献   

13.
This work investigates the effects of primary compounding temperature and secondary melt processes on the mechanical response and electrical resistivity of polycarbonate filled with 3 wt % multiwalled carbon nanotubes (CNT). Nanocomposites were melt compounded in an industrial setting at a range of temperatures, and subsequently either injection molded or compression molded to produce specimens for the measurement of electrical resistivity, surface hardness, and uniaxial tensile properties. Secondary melt processing was found to be the dominant process in determining the final properties. The effects observed have been attributed to structural arrangements of the CNT network as suggested by morphological evidence of optical microscopy and resistivity measurements. Properties were found to be relatively insensitive to compounding temperature. The measured elastic moduli were consistent with existing micromechanical models. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42277.  相似文献   

14.
The present study deals with the processing and characterization of cellulose nanocomposites natural rubber (NR), low‐density polyethylene (LDPE) reinforced with carrot nanofibers (CNF) with the semi‐interpenetrated network (S‐IPN) structure. The nanocomposites were compounded using a co‐rotating twin‐screw extruder where a master‐batch of NR and CNF was fed to the LDPE melt, and the NR phase was crosslinked with dicumyl peroxide. The prepared S‐IPN nanocomposites exhibited a significant improvement in tensile modulus and yield strength with 5 wt % CNF content. These improvements are due to a better phase dispersion in the S‐IPN nanocomposites compared with the normal blend materials, as demonstrated by optical microscopy, electron microscopy and ultraviolet–visible spectroscopy. The S‐IPN nanocomposite also displayed an improved crystallinity and higher thermal resistance compared with NR, CNF, and the normal blend materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45961.  相似文献   

15.
Novel porous bionanocomposites based on halloysite nanotubes as nanofillers and plasticized starch as polymeric matrix were successfully prepared by melt‐extrusion. Foaming was obtained by adding water as natural blowing agent, and by increasing the die temperature. Both the expansion ratio and the porosity increase with increasing die temperature. Addition of high water content allows reducing the foaming temperature. Moreover, the introduction of halloysite has double benefits: these fillers act both as a nucleating agent increasing the porosity and as a barrier agent increasing the proportion of small cells. Foams based on plasticized starch with a blend of glycerol and sorbitol loaded with 6 wt % of halloysite, extruded at 117°C, present the cellular structure and the mechanical properties required for scaffold applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41341.  相似文献   

16.
The preparation of microfibrillar composites (MFCs) based on oriented blends of polyamide 6 (PA6) and high‐density polyethylene (HDPE) is described. By means of conventional processing techniques, the PA6 phase was transformed in situ into fibrils with diameters in the upper nanometer range embedded in an isotropic HDPE matrix. Three different composite materials were prepared through the variation of the HDPE/PA6 ratio with and without a compatibilizer: MFCs reinforced by long PA6 fibrils arranged as a unidirectional ply; MFCs containing middle‐length, randomly distributed reinforcing PA6 bristles; and a nonoriented PA6‐reinforced material in which the PA6 phase was globular. The evolution of the morphology in the reinforcing phase (e.g., its visible diameter, length, and aspect ratio) was followed during the various processing stages as a function of the blend composition by means of scanning electron microscopy. Synchrotron X‐ray scattering was used to characterize selected unidirectional ply composites. The presence of transcrystalline HDPE was demonstrated in the shell of the reinforcing PA6 fibrils of the final MFCs. The impact of the compatibilizer content on the average diameter and length of the fibrils was assessed. The influence of the reinforcing phase on the tensile strength and Young's modulus of the various composites was also evaluated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
In recent years, bionanocomposites have received growing attention in science and industry due to their renewability, biodegradability and superior mechanical properties. Nanocellulose is another promising material that use as a reinforcement filler for bionanocomposite materials due to its lightweight, high surface area, high mechanical strength, high aspect ratio and low density. Different nanocellulose loading, sources, surface modification/functionalization and properties of nanocellulose are important in the production of bionanocomposites. In general, nanocellulose reinforced PLA bionanocomposite offers enhancement in tensile strength and elastic modulus. However, only minimal nanocellulose loadings are required for optimal results due to the incompatibility between the hydrophilic nanocellulose and hydrophobic PLA. This paper reviews the sources of nanocellulose and the properties of nanocellulose with a focus on the tensile and morphological properties of PLA bionanocomposites. Applications of nanocellulose in various industries are discussed in this article. This review article provides some important information. First, this study reviewed the application of nanostructured cellulose in biodegradable polymers. There are two types of nanostructured cellulose: nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC). Second, the status on articles published on nanocellulose and PLA/nanocellulose over the past 10 years is reported. Third, the authors of this paper implemented a holistic and critical review to provide a comprehensive understanding of the different properties between NCC and NFC, the application of nanocellulose in bionanocomposites, as well as the properties of PLA and PLA bionanocomposites. Moreover, the influence of NCC and NFC on the tensile and morphological properties of bionanocomposites is covered in this article.  相似文献   

18.
The present work studied the preparation of nanocomposites of polyamide-6 (PA6) containing nanofibrillated cellulose by melt blending in a twin screw extruder at different screw rotations to verify the fibrillation of cellulose fibers. Initially, the jute fibers were purified, hydrolyzed, and modified with titanium isopropoxide and aminopropyl silane, as well as with the two chemical modifications. They were incorporated into the polymeric matrix aiming that the shear in processing further aids in fiber fibrillation. The scanning electron microscopy analysis images of the composites showed the presence of fibers with nanodiameters dispersed in the PA6 matrix. The doubly modified fibers resulted in more fibrillation during extrusion. Increasing the screw speed of the extruder improved the degree of crystallinity for the composites with the modified fibers. The thermogravimetric measurements showed that the composite containing the doubly modified fibers increased the maximum degradation temperature. The storage modulus increased for the composites with the insertion of the treated fibers, and the glass transition temperature decreased in some composites. The composites showed higher pseudoplastic behavior, especially at high shear rates.  相似文献   

19.
A new polymer nanolayer gradient refractive index (GRIN) system with more robust thermal stability because of incorporation of a high glass transition temperature polyester, OKP4HT, was demonstrated. A combination of extruded nanolayered GRIN film systems, comprised of five unique polymer materials, were combined to produce laminate optics comprised of a large internal refractive index gradient distribution, n = 1.445 – 1.630, without degradation of optical transmissive properties. The optical performance of a series of varied magnitude GRIN lenses, ranging from Δn = 0 to 0.185, was evaluated. Increasing the lens refractive index range resulted in decreased optic sphericalaberrations that followed analytical predictions. An analytical approach was reported to correlate the polymer material upper service temperature (UST) to the onset of polymer material loss modulus as measured by DMTA. Thermo‐optical interferometry measurements of irreversible lens deformation confirmed the lenses UST at 125°C for the OKP4HT/PC system as compared to 75°C for a PMM/SAN17 system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42741.  相似文献   

20.
Nanocomposites of thermoplastic polyurethane (TPU) with cellulose nanocrystals (CNC) without and with surface treatment are obtained by melt processing. Nanocomposites are obtained with nanofiller weight content near of the theoretical percolation threshold (3.9 wt%). Visual observation of CNC agglomerates is sufficient to prove the inefficiency of the mixing in systems with untreated CNC. The crystallization kinetics of the TPU changes with the addition of CNC and this is confirmed by differential scanning calorimetry analysis. Thermogravimetric analysis prove that the addition of CNC increases the thermal stability of the TPU. From the rheological analysis it is possible to verify the absence of percolation and an intermediate state of sol–gel transition in the nanocomposites. CNC/TPU nanocomposites with 5 wt% of treated CNC present better mechanical performance than de neat TPU and the other processed nanocomposites and display around 130% increase in Young's modulus while retaining significant values of toughness, tensile strength and elongation at break.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号