首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(butylene succinate‐co‐L ‐lactate) (PBSL)–compatibilized poly(L ‐lactide) (PLLA) polymer blends with two commercial grades of polycarbonate (PC) were investigated. The capillary tests showed that the steady shear viscosity of high molecular weight PC (PC‐L) was 10 times higher than that of low molecular weight PC (PC‐AD) throughout the shear rate range under investigation. Morphologic examination revealed that the shape of the dispersed PC‐L phase in the as‐extruded blends was largely spherical, but the PC‐AD phase was more like a rod and elongated further during injection molding. Notched Izod impact strength (IS) of the unmodified PLLA/PC‐L blend was higher than that of PC‐AD blend. The IS of modified ternary blends increased with PBSL content because of enhanced phase interaction indicated from thermal and morphologic analysis. The PBSL modification also enhanced IS more significantly in PLLA/PC‐L than in PLLA/PC‐AD blends. On the contrary, the heat deflection temperature (HDT) of PLLA/PC‐L binary system was much lower than that of PLLA/PC‐AD. HDT of PBSL‐modified PLLA/PC‐AD blends dropped with increasing PBSL content, which is a ductile polymer. Thermal and dynamic mechanical analysis of the ternary blends showed that individual components were immiscible with distinct Tgs for PC and PLLA and distinct Tms for PBSL and PLLA. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

2.
High performance thermoplastic poly(ether ketone ketone) (PEKK) polymers with various meta phenyl links ratio were investigated by dynamical mechanical analysis. Analyses were carried out in a wide range of temperature from solid state (torsion rectangular mode) to the melt state (torsion parallel plates mode) as function of thermal history and environmental conditions. In the solid state, this study was focused on the secondary relaxations in the vitreous state. A complementary investigation conducted with different poly(aryl ether ketones) allowed us to propose a molecular interpretation of PEKK sub‐vitreous relaxations. In the molten state, storage modulus (G′), loss modulus (G″), storage viscosity (η′), and loss viscosity (η″) were studied to determine zero shear‐rate viscosity (η0) and thermal activation energy Ea. Master curves were built and the shift factor aT was determined. Thermal activation energies were extracted from an Arrhenius model on the shift factor temperature's dependency. Finally, Ea and η0 were determined thanks to the dynamic viscosity fit with Cross model and Cole–Cole representation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46456.  相似文献   

3.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Cross‐linked poly (vinyl alcohol) membranes were prepared using fumaric acid as the cross‐linking agent and were used for the pervaporation separation of water/isopropanol mixtures. Cross‐linking process was carried out at 150°C at three different times of 10, 30, and 60 min. The membranes were characterized by different known methods of FT‐IR, TGA, XRD as well as tensile test. The effects of cross‐linking time on the thermal and mechanical properties of the membranes and also their pervaporation performance were investigated. Formation of more ester groups by increasing the cross‐linking time was confirmed by the FT‐IR results. TGA analyses showed that thermal stability of the membranes is improved by prolonging the duration of cross‐linking process. This was due to the formation of more compact structure in the membranes. The XRD results revealed that the crystalline regions of the membranes were relatively diminished with an increase in the cross‐linking time. No specific trend was observed for the variation of tensile strength at break with the cross‐linking time. The PVA membrane cross‐linked for 60 min showed high selectivity of 1492 for water permeation for the feed mixture containing 10 wt % water. The temperature dependency of the permeation flux was investigated using Arrhenius relationship, and the activation energy values were calculated for total permeation (Ep), water (Epw), and IPA (EpIPA) fluxes. Lower value of Epw in comparison with EpIPA supported excellent dehydration performance of the cross‐linked membranes. Despite large increase in activation energy of water with prolonged cross‐linking time, the selectivity was improved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2013  相似文献   

5.
The melt flow properties during capillary extrusion of nanometre‐calcium‐carbonate‐filled acrylonitrile–butadiene–styrene (ABS) copolymer composites were measured by using a Rosand rheometer to identify the effects of the filler content and operation conditions on the rheological behaviour of the sample melts. The experiments were conducted under the following test conditions: temperature varied from 220 to 240 °C and shear rate ranged from 10 to 104 s?1. The filler volume fractions were 0, 10, 20, 30, 40 and 50%. The results showed that the shear flow did not strictly obey the power law under the test conditions, and that the entry pressure drop (ΔPen) and the extension stress (σe) in entry flow increased nonlinearly, while the melt shear viscosity (ηs) and extension viscosity (ηe) decreased with increasing the wall shear stress (τw) at constant test temperature. The dependence of the melt shear viscosity on the test temperature was approximately consistent with the Arrhenius expression at fixed τw. When τw was constant, ηs and ηe increased while ΔPen and σe decreased with the addition of the filler volume fraction. © 2002 Society of Chemical Industry  相似文献   

6.
Nanosized calcium carbonate (nano‐CaCO3)‐filled poly‐L ‐lactide (PLLA) biocomposites were compounded by using a twin‐screw extruder. The melt flow behavior of the composites, including their entry pressure drop, melt shear flow curves, and melt shear viscosity were measured through a capillary rheometer operated at a temperature range of 170–200°C and shear rates of 50–103 s?1. The entry pressure drop showed a nonlinear increase with increasing shear stress and reached a minimum for the filler weight fraction of 2% owing to the “bearing effect” of the nanometer particles in the polymer matrix melt. The melt shear flow roughly followed the power law, while the effect of temperature on the melt shear viscosity was estimated by using the Arrhenius equation. Hence, adding a small amount of nano‐CaCO3 into the PLLA could improve the melt flow behavior of the composite. POLYM. ENG. SCI., 52:1839–1844, 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
Poly(l ‐lactic acid) (PLLA), a biopolymer that can be derived from renewable resources, is known for its brittleness as a result of slow crystallization rates under supercooling conditions, which is associated with the formation of large spherulites. In addition, the glass transition temperature (Tg) of PLLA is 60°C, such that the polymer chain is immobile at room temperature. These disadvantages make PLLA unsuitable for use in the food packaging sector. In this research, biopolymer blends based on PLLA and poly((R)‐3‐hydroxybutyrate) (PHB), together with tributyl citrate (TBC) as a plasticizer, were developed. TBC was added to increase polymer chain mobility, and to decrease PLLA Tg from 60 to 10°C in blends. Furthermore, the addition of PHB as a nucleating agent to PLLA resulted in an increased proportion of smaller spherulites. Fourier‐transform infrared (FT‐IR) spectroscopy indicated that the carbonyl group and several other characteristic peaks in blends are shifted to lower wavenumber. In addition, polarized optical microscopy experiments confirmed the results of differential scanning calorimetry, FT‐IR, and wide‐angle X‐ray diffraction, showing that PHB enhances the crystallization behavior by acting as a bionucleation. POLYM. ENG. SCI., 54:1394–1402, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Poly(L ‐lactide) (PLLA) films having different crystallinities (Xc's) and crystalline thicknesses (Lc's) were prepared by annealing at different temperatures (Ta's) from the melt and their high‐temperature hydrolysis was investigated at 97°C in phosphate‐buffered solution. The changes in remaining weight, molecular weight distribution, and surface morphology of the PLLA films during hydrolysis revealed that their hydrolysis at the high temperature in phosphate‐buffered solution proceeds homogeneously along the film cross‐section mainly via the bulk erosion mechanism and that the hydrolysis takes place predominantly and randomly at the chains in the amorphous region. The remaining weight was higher for the PLLA films having high initial Xc when compared at the same hydrolysis time above 30 h. However, the difference in the hydrolysis rate between the initially amorphous and crystallized PLLA films at 97°C was smaller than that at 37°C, due to rapid crystallization of the initially amorphous PLLA film by exposure to crystallizable high temperature in phosphate‐buffered solution. The hydrolysis constant (k) values of the films at 97°C for the period of 0–8 h, 0.059–0.085 h–1 (1.4–2.0 d–1), were three orders of magnitude higher than those at 37°C for the period of 0–12 months, 2.2–3.4×10–3 d–1. The melting temperature (Tm) and Xc of the PLLA films decreased and increased, respectively, monotonously with hydrolysis time, excluding the initial increase in Tm for the PLLA films prepared at Ta = 100, 120, and 140°C in the first 8, 16, and 16 h, respectively. A specific peak that appeared at a low molecular weight around 1×104 in the GPC spectra was ascribed to the component of one fold in the crystalline region. The relationship between Tm and Lc was found to be Tm (K) = 467·[1–1.61/Lc (nm)] for the PLLA films hydrolyzed at 97°C for 40 h.  相似文献   

9.
Poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) with very different weight‐average molecular weights (Mw) of 4.0 × 103 and 7.0 × 105 g mol?1 (Mw(PDLA)/Mw(PLLA) = 175) were blended at different PDLA weight ratios (XD = PDLA weight/blend weight) and their crystallization from the melt was investigated. The presence of low molecular weight PLLA facilitated the stereocomplexation and thereby lowered the cold crystallization temperature (Tcc) for non‐isothermal crystallization during heating and elevated the radial growth rate of spherulites (G) for isothermal crystallization, irrespective of XD. The orientation of lamellae in the spherulites was higher for the neat PLLA, PDLA and an equimolar blend than for the non‐equimolar blends. It was found that the orientation of lamellae in the blends was maintained by the stereocomplex (SC) crystallites. Although the G values are expected to decrease with an increase in XD or the content of high‐molecular‐weight PDLA with lower chain mobility compared with that of low‐molecular‐weight PLLA, G was highest at XD = 0.5 where the maximum amount of SC crystallites was formed and the G values were very similar for XD = 0.4 and XD = 0.6 with the same enantiomeric excess. This means that the effect of SC crystallites overwhelmed that of chain mobility. The nucleating mechanisms of SC crystallites were identical for XD = 0.1–0.5 in the Tc range 130–180 °C. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Crystallization kinetics behavior and morphology of poly(3‐hydroxybutyrate) (PHB) blended with of 2–10 wt% loadings of poly(L ‐ and D ‐lactic acid) (PLLA and PDLA) stereocomplex crystallites, as biodegradable nucleating agents, were studied using differential scanning calorimetry, polarizing‐light optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Blending PLLA with PDLA at 1:1 weight ratio led to formation of stereocomplexed PLA (sc‐PLA), which was incorporated as small crystalline nuclei into PHB for investigating melt‐crystallization kinetics. The Avrami equation was used to analyze the isothermal crystallization of PHB. The stereocomplexed crystallites acted as nucleation sites in blends and accelerated the crystallization rates of PHB by increasing the crystallization rate constant k and decreasing the half‐time (t1/2). The PHB crystallization was nucleated most effectively with 10 wt% stereocomplexed crystallites, as evidenced byPOM results. The sc‐PLA complexes (nucleated PHB crystals) exhibit much small spherulite sizes but possess the same crystal cell morphology as that of neat PHB based on the WAXD result. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
The addition of polyhedral oligomeric silsesquioxane‐styrene copolymers, co(POSS#‐sty), to entangled polystyrene (PS) reduced (1) the glass‐transition temperature, Tg,blend, (2) the rubbery modulus, and (3) the melt viscosity. POSS#‐sty copolymers with # = 15, 25, and 45 wt% POSS were blended with PS. The blends were miscible and Tg,blend decreased with POSS#‐sty content. Strikingly, POSS#‐sty copolymers also reduced the melt viscosity, up to an order of magnitude reduction. The reductions of Tg,blend and melt viscosity were driven by the type of POSS#‐sty copolymer, POSS45‐sty producing the largest decrease of Tg,blend. Linear viscoelasticity and the time–temperature superposition (TTS) principle (using Tref = Tg + 50 K to ensure iso‐frictional conditions) revealed that POSS#‐sty induced up to an order of magnitude reduction of the rubbery modulus Ge. The increase of free volume fg promoted by POSS#‐sty induced the reduction of Tg,blend and Ge, as revealed by TTS analysis. The increase of free volume promoted by POSS#‐sty induced chain intercalation (TEM showed that POSS domains were smaller than the molecular mesh) and these are key factors for the chain disentanglement with the consequent rubbery modulus and melt viscosity reductions. The use of low‐molecular weight polystyrene alone will not produce increase of free volume and tube dilation. POLYM. ENG. SCI., 59:2377–2386, 2019. © 2019 Society of Plastics Engineers  相似文献   

12.
Triazole cross‐linked polymers based on poly(3‐azidomethyl‐3‐methyl oxetane) (poly‐AMMO) and glycidyl azide polymer (GAP) were prepared using bis‐propargyl‐1,4‐cyclohexyl‐dicarboxylate (BPHA) as curing agent, respectively. Swelling tests demonstrated that cross‐linking densities of the resulted polymers both increased with the increase of BPHA. Triazole cross‐linked polymers based on poly‐AMMO showed superior tensile strength and elongation at break than those of GAP at comparable stoichiometry. The curing kinetics was also investigated by FTIR, and GAP exhibited faster reaction rate when reacted with BPHA than that of poly‐AMMO. In addition, with the increase of cross‐linking density, the glass transition temperature (Tg) of as‐prepared polymers significantly increased, and poly‐AMMO‐based polymers showed stronger Tg‐raising effect than GAP‐based polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43341.  相似文献   

13.
Two series of polyurethanes were synthesized using one‐ and two‐step reactions in a bulk phase at 175 °C with polycaprolactone diol, butane‐1,4‐diol, and 4,4‐diphenylmethane diisocyanate (MDI) in a suspension of starch granules to observe cross‐linking phenomena. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC) analysis, and complex viscosity η*(ω), storage G′(ω), and loss‐modulus G″(ω) as rheological measurements, were carried out to characterize the cross‐linking in the polyurethane incorporated with starch. SEM micrographs indicated that grafted polyurethane was cross‐linked between starch granules forming a three‐dimensional network. The plots of η* against ω, and log G′ against log G″ showed that the starch content increased cross‐linking, so as to induce gelation (G′G″). However, the cross‐linked networking was decreased over the higher range of starch contents (> 33 wt.‐% for the low hard‐segment series, psb2m3 and > 27 wt.‐% for the high hard‐segment series, psb4m5). Cross‐linking is also enhanced in the high hard‐segment series compared to the low hard‐segment series. Increasing the catalyst concentration also enhanced the cross‐linking inside of the polyurethane phase.

Plots of η* against ω for p7s3b4m5(OSR C0.01) and p7s3b4m5(TSR C0.01).  相似文献   


14.
The crystalline structure of poly(L ‐lactide) (PLLA) have been found to quite depend on the crystallization temperatures (Tcs), especially in the range of 100?120°C, which is usually used as the crystallization temperature for the industrial process of PLLA. The analysis of wide‐angle X‐ray diffraction and Fourier transformed infrared spectroscopy revealed that 110°C is a critical temperature for PLLA crystallization. At Tc < 110°C and Tc ≥ 110°C, the α′ and α crystals were mainly produced, respectively. Besides, the structural feature of the α′‐form was illustrated, and it was found that the α′‐form has the larger unit cell dimension than that of the α‐form. Moreover, the crystallization kinetics of the α′ and α crystals are different, resulting in the discontinuousness of the curves of spherulite radius growth rate (G) versus Tc and the half time in the melt‐crystallization (t1/2) versus Tc investigated by Polarized optical microscope and Differential scanning calorimetry, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The isothermal crystallization behavior of poly(L ‐lactic acid)/organo‐montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice‐functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (ti) and half times for overall PLLA crystallization (100°C ≤ Tc ≤ 120°C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X‐ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer. The specific interaction between PLLA and TFC was characterized by the Flory‐Huggins interaction parameter (B), which was determined by the equilibrium melting point depression of nanocomposites. The final values of B showed that PLLA was more compatible with TFC than normal OMMT. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

17.
The rheological behavior of blends of poly(styrene-co-acrylonitrile) (SAN) and poly(ε-caprolactone) (PCL) was investigated, using a cone-and-plate rheometer. For the study, blends of various compositions were prepared by melt blending using a twin-screw compounding machine. The rheological properties measured were shear stress (σ12), viscosity (η), and first normal stress difference (N1) as functions of shear rate (γ) in steady shearing flow, and dynamic storage modulus (G′) and loss modulus (G″) as functions of angular frequency (ω) in oscillatory shearing flow, at various temperatures. It has been found that logarithmic plots of N1 versus σ12, and logarithmic plots of G′ versus G″, become virtually independent of temperature but vary regularly with blend composition, and that the zero-shear viscosity of the blends, (ηo)blend, follows the relationship, 1/log(ηo)blend = wA/log η0A + wB/log η0B, where η0A and η0B are the zero-shear viscosities of components A and B, respectively, and wA and wB are the weight fractions of components A and B, respectively. The physical implications of the relationship found are discussed.  相似文献   

18.
Chain extension of poly(ethylene terephthalate) (PET) with bisphenol‐A dicyanate (BADCy) was studied using an internal mixer under reactive blending conditions. The reaction between PET and BADCy was confirmed by Fourier transform infrared (FTIR) and chemical titration. With increasing amount of BADCy introduced, the modified PET gave rise to higher torque during stirred in an internal mixer, higher viscosity (η′), and higher storage modulus (G′). Measurement of intrinsic viscosity showed that BADCy indeed extended the molecular weight of PET. DSC analysis represented that Tm and Tc of the modified PET were shifted to low temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Rheological properties in a molten state are studied extensively for poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate), PHB‐HV, with a small amount of crosslinked poly(epichlorohydrin), PECH, having low density of crosslink points. It is found that adding 2 wt % of xPECH greatly enhances the melt elasticity of PHB‐HV, one of the serious defects of microbial PHB, whereas it has no effect on the shear viscosity. As a result, viscoelastic nature, and thus processability, of PHB‐HV can be controlled by blending the crosslinked PECH. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The effect of the final melting temperature (Tf) on the crystallization of poly(l ‐lactide) (PLLA)/poly(d ‐lactide) (PDLA) was studied via a combination of differential scanning calorimetry, wide‐angle X‐ray scattering, polarized optical microscopy, and Fourier transform infrared (FTIR) spectroscopy. We observed that a residual stereocomplex (SC) crystal induced the formation of SC crystals during cooling from a Tf (230°C) just above the melting peak of the SC crystals. On cooling from a Tf (240°C) just above the endset temperature of SC crystal melting [Tm(S)(E)], the possible order structure and the strong interchain interaction promoted the preferential crystallization of SC crystals; this enhanced the formation of α crystals. During cooling from a Tf (≥250°C) far above Tm(S)(E), the crystallization peaks of α and SC crystals converged. The FTIR results indicated that the residual SC crystals, possible ordered structure, and interchain interactions in the melt might have been the key factors for the different crystallization of PLLA/PDLA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号