首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

2.
Biodiesel is considered one of the best alternative fuel sources in the transportation industry, but it has shown aggressive characteristics on materials that are used in fuel storage and delivery systems in vehicles. In this study, the effect of biodiesel (B100) on the properties of two polyamide‐6‐based semicrystalline polymers was studied and compared with that of diesel and a 20/80 blend of biodiesel and diesel (B20). Experiments were conducted using room temperature immersion tests in the three fuels for 720 h followed by postimmersion thermal and mechanical tests. In all three fuels, the polymers exhibited non‐Fickian weight increase during immersion and did not achieve equilibrium level of absorption in 720 h. The glass transition temperature (Tg), yield and tensile strengths, storage modulus, and peak tan δ decreased after immersion, while the degree of crystallinity and loss modulus increased. Fourier transform infrared spectroscopy study showed that no chemical changes occurred due to immersion. It is concluded that all three fuels absorbed into the polymers acted as plasticizers which caused the observed changes in the properties of the two polymers investigated in this research. POLYM. ENG. SCI., 59:1445–1454 2019. © 2019 Society of Plastics Engineers  相似文献   

3.
This work studied the effects of hydrogenated acrylonitrile‐butadiene rubber (HNBR) and precipitated silica (PSi) loadings in acrylonitrile‐butadiene rubber (NBR) filled with 60 parts per hundred of rubber (phr) of carbon black (CB) for oil‐resistant seal applications in contact with gasohol fuel. The cure characteristics, mechanical properties, and swelling behavior of HNBR/NBR blends reinforced with PSi before and after immersion in ethanol‐based oils (E10, E20, and E85) were then monitored. This work studied the effects of PSi loading in rubber compounds on the mechanical properties of the rubber blends. The results suggested that the scorch time of CB‐filled NBR/HNBR was not affected by HNBR loading, but the cure time, Mooney viscosity, and torque difference increased with HNBR content. The swelling of the blends in E85 oil were relatively low compared with those in E10 and E20 oils. The recommended NBR/HNBR blend ratio for oil‐resistant applications was 50/50. Tensile strength and elongation at break before and after immersion in gasohol oils increased with HNBR loading, and the opposite effect was found for tensile modulus and hardness. PSi filler had no effect on scorch time, but decreased the cure time of the blends. The swelling level of the blends slightly decreased with increasing PSi content. The recommended silica content for optimum reinforcement for black‐filled NBR/HNBR blend at 50/50 was 30 phr. The results in this work suggested that NBR/HNBR blends reinforced with 60 phr of CB and 30 phr of silica could be potentially used for rubber seals in contact with gasohol fuels. J. VINYL ADDIT. TECHNOL., 22:239–246, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
《Fuel》2007,86(10-11):1534-1544
This study presents analytical comparisons of atomization characteristics of 7 biodiesels and 17 binary and ternary blends with D1 and D2 at 80 °C, using a direct injection injector. The atomization of a genetically modified vegetable oil – Captex 355 – and its corresponding biodiesel were also studied. Results from statistical analysis showed that B100 coconut biodiesel had similar atomization characteristics to D2, because of its similar properties, i.e. density, surface tension and viscosity. No significant difference in drop size was observed for all B5 blends, and B20 blends and B100 biodiesels of palm, soybean, cottonseed, peanut and canola. It implies these stocks of biodiesels and their blends can be used in a DI engine with similar atomization characteristics. Ternary biodiesel blends, with ⩽10 wt.% petroleum diesel, can yield equal drop sizes as some binary blends with large quantities of D1 and D2. The ternary biodiesel blends are likely to reduce pollution from exhaust emissions better than the biodiesel blends with D1 or D2. Captex 355 biodiesel had the best atomization characteristics of all the fuels studied. The Sauter mean diameter (SMD) produced by this fuel was up to 13% and 25% smaller than that of D1 and D2, respectively. The Captex 355 biodiesel may be used as a base in binary or ternary biodiesel blends to achieve better atomization than D1 and D2 in diesel engines.  相似文献   

5.
FAME of lard, beef tallow, and chicken fat were prepared by base-catalyzed transesterification for use as biodiesel fuels. Selected fuel properties of the neat fat-derived methyl esters (B100) were determined and found to meet ASTM specifications. The cold-flow properties, lubricity, and oxidative stability of the B100 fat-derived fuels also were measured. In general, the cold-flow properties of the fat-based fuels were less desirable than those of soy-based biodiesel, but the lubricity and oxidative stability of the fat-based biodiesels were comparable to or better than soy-based biodiesel. Nitrogen oxide (NOx) emission tests also were conducted with the animal fat-derived esters and compared with soybean oil biodiesel as 20 vol% blends (B20) in petroleum diesel. The data indicated that the three animal fat-based B20 fuels had lower NOx emission levels (3.2–6.2%) than did the soy-based B20 fuel.  相似文献   

6.
Biodiesel has become more attractive as alternative fuel for automobiles because of its environmental benefits and the fact that it is made from renewable sources. However, corrosion of metals in biodiesel is one of the concerns related to biodiesel compatibility issues. This study aims to characterize the corrosion behavior of commercial pure copper and leaded bronze commonly encountered in the automotive fuel system in diesel engine. Static immersion tests in B0, B50 and B100 fuels were carried out at room temperature for 2640 h. Similar immersion tests in B0, B100 and B100 (oxidized) fuels were also conducted at 60 °C for 840 h. At the end of the test, corrosion behavior was investigated by weight loss measurements and changes in surface morphology. Fuels were analyzed by using TAN analyzer, FTIR, MOA (multi-element oil analyzer) to investigate acid concentration, oxidation level with water content and corrosive impurities respectively. Results showed that under the experimental conditions, pure copper was more susceptible to corrosion in biodiesel as compared to leaded bronze.  相似文献   

7.
A number of investigations have examined the impact of the use of biodiesel on the emissions of carbon dioxide and regulated emissions, but limited information exists on the chemical composition of particulate matter from diesel engines burning biodiesel blends. This study examines the composition of diesel particulate matter (DPM) emissions from a commercial agriculture tractor burning a range of biodiesel blends operating under a load that is controlled by a power take off (PTO) dynamometer. Ultra-low sulfur diesel (ULSD) fuel was blended with soybean and beef tallow based biodiesel to examine fuels containing 0% (B0), 25% (B25), 50% (B50), 75% (B75), and 100% (B100) biodiesel. Samples were then collected using a dilution source sampler to simulate atmospheric dilution. Diluted and aged exhaust was analyzed for particle mass and size distribution, PM2.5 particle mass, PM2.5 organic and elemental carbon, and speciated organic compounds. PM2.5 mass emissions rates for the B25, B50, and B75 soybean oil biodiesel mixtures had 20%–30% lower emissions than the petroleum diesel, but B100 emissions were about 40% higher than the petroleum diesel. The trends in mass emission rates with the increasing biodiesel content can be explained by a significant decrease in elemental carbon (EC) emissions across all blending ranges and increasing organic carbon (OC) emissions with pure biodiesel. Beef tallow biodiesel blends showed similar trends. Nevertheless, it is important to note that the study measurements are based on low dilution rates and the OC emissions changes may be affected by ambient temperature and different dilution conditions spanning micro-environments and atmospheric conditions. The results show that the use of biodiesel fuel for economic or climate change mitigation purposes can lead to reductions in PM emissions and a co-benefit of EC emission reductions. Detailed speciation of the OC emissions were also examined and are presented to understand the sensitivity of OC emissions with respect to biodiesel fuel blends.

Copyright 2012 American Association for Aerosol Research  相似文献   

8.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.  相似文献   

9.
张家栋  尚琼  鲁厚芳  梁斌 《化工进展》2013,32(8):1807-1812
麻疯树籽油是制备生物柴油的优良原料油,由其制得的生物柴油具有良好的应用前景。为了分析和评价在运输、储存和使用过程中麻疯树籽油生物柴油与材料的相互影响,本文主要考察了4种橡胶和4种塑料分别与麻疯树籽油生物柴油-0#柴油混合燃料的相互作用及影响。试验结果表明:生物柴油混合燃料与材料接触28~56天后,其酸值和运动黏度仍满足国家标准要求;氟橡胶质量、硬度变化小,厚度的变化率小于18.00%,拉伸强度变化率小于?22.00%,有较好的耐甲酯性,而氯丁橡胶、三元乙丙橡胶及丁腈橡胶不能长期使用;生物柴油混合燃料对4种塑料厚度、质量的影响较小,其稳定性较好。  相似文献   

10.
Waste anchovy fish oils transesterification was studied with the purpose of achieving the conditions for biodiesel usage in a single cylinder, direct injection compression ignition. With this purpose, the pure biodiesel produced from anchovy fish oil, biodiesel-diesel fuel blends of 25%:75% biodiesel-diesel (B25), 50%:50% biodiesel-diesel (B50), 75%:25% biodiesel-diesel (B75) and petroleum diesel fuels were used in the engine to specify how the engine performance and exhaust emission parameters changed. The fuel properties of test fuels were analyzed. Tests were performed at full load engine operation with variable speeds of 1000, 1500, 2000 and 2500 rpm engine speeds. As results of investigations on comparison of fuels with each other, there has been a decrease with 4.14% in fish oil methyl ester (FOME) and its blends' engine torque, averagely 5.16% reduction in engine power, while 4.96% increase in specific fuel consumption have been observed. On one hand there has been average reduction as 4.576%, 21.3%, 33.42% in CO2, CO, HC, respectively; on the other hand, there has been increase as 9.63%, 29.37% and 7.54% in O2, NOx and exhaust gas temperature has been observed. It was also found that biodiesel from anchovy fish oil contains 37.93 wt.% saturated fatty acids which helps to improve cetane number and lower NOx emissions. Besides, for biodiesel and its blends, average smoke opacity was reduces about 16% in comparison to D2. It can be concluded that waste anchovy fish obtained from biodiesel can be used as a substitute for petroleum diesel in diesel engines.  相似文献   

11.
To reduce air pollution and the reliance on fossil fuel, biodiesel has been widely investigated as an alternative fuel for diesel engines. The purpose of this study is to investigate the influence of waste cooking oil (WCO) biodiesel on the physical properties and the oxidation reactivity of the particles emitted by a diesel engine operating on WCO biodiesel as the main fuel. Experiments were conducted on a direct-injection diesel engine fueled with biodiesel, B75 (75% biodiesel and 25% diesel on volume basis, v/v), B50, B20, and diesel fuel, at five engine loads and at an engine speed of 1920 rev/min. Particulate samples were collected to analyze the particulate nanostructure, volatility, and oxidation characteristics. Biodiesel or low-load operation leads to smaller primary particles and more disordered nanostructures having shorter and more curved graphene layers. It can be found that particles from biodiesel, blended fuels, or low-load operation have higher volatile mass fractions and faster oxidation reaction rates than particles from diesel or heavy-load operation. The higher oxidation reaction rates are due mainly to the smaller particle size, the more disordered nanostructure, and the higher volatile mass fraction. It is also found that changes in primary particle size and particulate nanostructure are not directly proportional to the biodiesel content, while changes in particulate volatility and particulate oxidation reactivity are proportional to the biodiesel content. The use of biodiesel can enhance particulate oxidation reactivity and the regeneration of soot particles in an after-treatment device.

Copyright © 2016 American Association for Aerosol Research  相似文献   


12.
Biodiesel is a biodegradable, sulfur-free, oxygenated, and renewable alternative diesel fuel consisting of the alkyl monoesters of FA from vegetable oils and animal fats. Biodiesel can be used in existing diesel engines without significant modifications. However, differences in physical properties between biodiesel and petroleum-based diesel fuel may change the engine's fuel injection timing and combustion characteristics. These altered physical and chemical properties also may cause the exhaust emissions and performance to differ from the optimized settings chosen by the engine manufacturer. In particular, the density, speed of sound, and isentropic bulk modulus have a significant effect on the fuel injection system and combustion. The objective of this study was to measure these three properties for biodiesel (and the pure esters that are the constituents of biodiesel) at temperatures from 20 to 100°C and at pressures from atmospheric to 32.5 MPa. Ten different biodiesel fuels, 16 different pure FA esters, three hydrocarbons, and one diesel fuel were tested. The measured values of density, speed of sound, and isentropic bulk modulus are presented. Correlations between pressure and temperature are demonstrated. Speed of sound and isentropic bulk modulus tend to increase as the degree of unsaturation increases and as the chain length increases. However, density increased with shorter chain length and decreased with saturation.  相似文献   

13.
A gas-to-liquid (GTL) fuel derived from Low Temperature Fischer-Tropsch process has been tested in an automotive diesel engine fulfilling Euro 4 emissions regulations. Both regulated and non-regulated emissions have been compared with those of a commercial diesel fuel, a commercial biodiesel fuel and a GTL-biodiesel fuel (30% and 70% v/v, respectively) in order to check blending properties, synergistic effects and compatibility between first and second generation production technologies for biofuel consumption in current diesel engines. After presenting a detailed literature review, and confirming that similar efficiencies are attained with the four tested fuels under identical road-like operating conditions (this meaning fuel consumption is inversely proportional to their heating values), significant reductions in smoke opacity, particulate matter emissions and particle number concentration were observed with both GTL and biodiesel fuels, with small changes in NOx emissions. Compared with the reductions in PM emissions derived from the use of biodiesel fuels, those derived from using GTL fuels were quite similar, despite its lower soot emissions reductions. This can be explained by the lower volatile organic fraction of the PM in the case of GTL. By adequately blending both fuels, a considerable potential to optimise the engine emissions trade-off is foreseen.  相似文献   

14.
The specific gravity of biodiesel and its blends with diesel fuel   总被引:6,自引:0,他引:6  
The specific gravities of biodiesel and 75, 50, and 20% blends with No. 1 and No. 2 diesel fuels were measured as a function of temperature from the onset of crystallization to 100°C. The results indicate that biodiesel and its blends demonstrate temperature-dependent behavior that is qualitively similar to the diesel fuels. The temperature dependence of the specific gravity for biodiesel and its blends was compared with the ASTM D 1250-80 procedure for the temperature correction of hydrocarbon fuels, and the procedure was found to provide accurate corrections. A blending equation was developed that allows the specific gravity of blends to be calculated from the specific gravities of the biodiesel and diesel fuels.  相似文献   

15.
Engine performance and emission comparisons were made between the use of soy, Canola and yellow grease derived B100 biodiesel fuels and an ultra-low sulphur diesel fuel in the high load engine operating conditions. Compared to the diesel fuel engine-out emissions of nitrogen oxides (NOx), a high-cetane number (CN) biodiesel fuel produced comparable NOx while the biodiesel with a CN similar to the diesel fuel produced relatively higher NOx at a fixed start of injection. The soot, carbon monoxide and un-burnt hydrocarbon emissions were generally lower for the biodiesel-fuelled engine. Exhaust gas recirculation (EGR) was then extensively applied to initiate low temperature combustion (LTC) mode at medium and low load conditions. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. Simultaneous reduction of NOx and soot was achieved when the ignition delay was prolonged by more than 50% from the case with 0% EGR at low load conditions. Furthermore, a preliminary ignition delay correlation under the influence of EGR at steady-state conditions was developed. The correlation considered the fuel CN and oxygen concentrations in the intake air and fuel. The research intends to achieve simultaneous reductions of NOx and soot emissions in modern production diesel engines when biodiesel is applied.  相似文献   

16.
Chao He  Yunshan Ge  Jianwei Tan  Xiukun Han 《Fuel》2010,89(8):2040-10343
With mutagenic and carcinogenic potential, polycyclic aromatic hydrocarbons (PAHs) from mobile source exhaust have contributed to a substantial share of air toxics. In order to characterize the PAHs emissions of diesel engine fueled with diesel, biodiesel (B100) and its blend (B20), an experimental study has been carried out on a direct-injection turbocharged diesel engine. The particle-phase and gas-phase PAHs in engine exhaust were collected by fiberglass filters and “PUF/XAD-2/PUF” cartridges, respectively, then the PAHs were determined by a gas chromatograph/mass spectrometer (GC/MS). The experimental results indicated that comparing with diesel, using B100 and B20 can greatly reduce the total PAHs emissions of diesel engine by 19.4% and 13.1%, respectively. The Benzo[a]Pyrene (BaP) equivalent of PAHs emissions were also decreased by 15.0% with the use of B100. For the three fuels, the gas-phase PAHs emissions were higher than particle-phase PAHs emissions and the most abundant PAH compounds from engine exhaust were naphthalene and phenanthrene. The analysis showed that there was a close correlation between total PAHs emissions and particulate matter (PM) emissions for three fuels. Furthermore, the correlation became more significant when using biodiesel.  相似文献   

17.
Jianxin Wang  Jianhua Xiao  Shijin Shuai 《Fuel》2009,88(10):2037-700
In order to meet Euro IV emission standards, diesel vehicles are compelled to install exhaust aftertreatment devices, which largely increases the overall cost. This paper explores the possibility to significantly reduce the particulate matter (PM) emissions by new fuel design. Several oxygenated blends were obtained by mixing the biodiesel, ethanol, dimethyl carbonate (DMC), and diesel fuels. The tests were conducted on two heavy-duty diesel engines, both with a high-pressure injection system and a turbocharger. The total PM and its dry soot (DS) and soluble organic fraction (SOF) constituents were analyzed corresponding to their specific fuel physiochemical properties. A blended fuel that contains biodiesel, DMC, and high cetane number diesel fuels was chosen eventually to enable the diesel engines to meet the Euro IV emission regulation. Based on the test results, the basic design principles were derived for the oxygenated blends that not only need the high oxygen content, but also the high cetane number and the low sulfur and low aromatic contents.  相似文献   

18.
Aviation fuel JP-5 and biodiesel on a diesel engine   总被引:1,自引:0,他引:1  
Naval aviation turbine fuel, JP-5, has been accepted as alternative to JP-8 in the frame of the Single Fuel Policy. This has resulted in some ongoing research on JP-5 fuel for its application as a naval single fuel. The necessity to cope with the environmental problems identified in the process of implementing the Single Fuel Policy as well as the strict requirements of modern diesel engines has lead to the need of improved single fuel quality. The development of biomass derived substitutes for diesel, such as biodiesel, is a possible attractive solution. The present paper is an effort to evaluate JP-5 along with diesel and biodiesel for use in a diesel engine. These fuels were used alone and in various mixture fractions in a single cylinder stationary diesel engine in order to evaluate their performance under defined operating conditions of the engine. JP-5 reduced both the NOx and particulate matter emissions as compared to the reference fuel case. Biodiesel significantly lowered particulate emissions, but slightly increased NOx emissions and fuel consumption. Fuel sulfur content has an undesired effect on smoke opacity. Biodiesel increased the fuel consumption when added to petroleum fuels and the increase was larger at high engine loads. Diesel and JP-5 showed similar fuel consumption, with diesel consumption increasing at high engine loads. Ternary blends showed similar behavior. The blends with lower biodiesel content showed lower volumetric fuel consumption.  相似文献   

19.
The use of biodiesel is increasing as an attractive fuel due to the depleting fossil fuel resources and environmental degradation. This paper presents results of an investigation on the potentials of biodiesel as an alternative fuel and main substitute of diesel oil, comparing the CO2 emissions of the main fuels in the Brazilian market with those of biodiesel, in pure form or blended in different proportions with diesel oil (2%, 5%, and 20%, called B2, B5, and B20, respectively). The results of the study are shown in ton CO2 per m3 and ton CO2 per year of fuel. The fuels were analyzed considering their chemical composition, stoichiometric combustion parameters and mean consumption for a single vehicle. The fuels studied were: gasoline, diesel oil, anhydrous ethyl alcohol (anhydrous ethanol), and biodiesel from used frying oil and from soybean oil. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. With data provided by the Brazilian Association of Automotive Vehicle Manufacturers (ANFAVEA) for the number of vehicles produced in Brazil, the emissions of CO2 for the national fleet in 2007 were obtained per type of fuel. With data provided by the Brazilian Department of Transit (DENATRAN) concerning the number of diesel vehicles in the last five years in Brazil, the total CO2 emissions and the percentage that they would decrease in the case of use of pure biodiesel, B100, or several mixtures, B2, B5 and B20, were calculated. Estimates of CO2 emissions for a future scenario considering the mixtures B5 and B20 are also included in this article.  相似文献   

20.
《Fuel》2007,86(1-2):143-151
The dynamic viscosities of biodiesel derived from ethyl esters of fish oil, no. 2 diesel fuel, and their blends were measured from 298 K down to their respective pour points. Blends of B80 (80 vol.% biodiesel–20 vol.% no. 2 diesel), B60, B40 and B20 were investigated. All the viscosity measurements were made with a Bohlin VOR Rheometer. Cloud point and pour point measurements were made according to ASTM standards. Arrhenius equations were used to predict the viscosities of the pure Biodiesel (B100), no. 2 diesel fuel (B0) and the biodiesel blends (B80, B60, B40, and B20) as a function of temperature. The predicted viscosities agreed well with measured values. An empirical equation for calculating the dynamic viscosity of these blends as a function of both temperature and blend has been developed. Furthermore, based on the kinematic viscosity and density measurements of B100 up to 573 K by Tate et al. [Tate RE, Watts KC, Allen CAW, Wilkie KI. The viscosities of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1010–5; Tate RE, Watts KC, Allen CAW, Wilkie KI. The densties of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1004–9] an empirical equation for predicting the dynamic viscosity of pure biodiesel for temperatures from 277 K to 573 K is given. Empirical equations for predicting the cloud and pour point for a given blend give values in good agreement with experiments. The dynamic viscosity of biodiesel and its blends increases as temperature decreases and show Newtonian behaviour down to the pour point. Dynamic viscosity, cloud point and pour point decreases with an increase in concentration of no. 2 diesel in the blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号