首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three polyesters—poly(ethylene terephthalate), poly(2‐methyl‐1,3‐propylene terephthalate‐co‐ethylene terephthalate), and poly(1,4‐cyclohexylene terephthalate‐co‐ethylene terephthalate)—were preirradiated with 60Co‐γ‐rays. Then, acrylic acid and N‐vinylformamide were grafted to these irradiated fibers. Fibers grafted with N‐vinylformamide were further hydrolyzed with acid so that the amide groups would convert into amino groups, and they were treated with glutaraldehyde so that aldehyde groups would be introduced. Chitosan or chitooligosaccharide was then grafted to these fibers via either esterification or imine formation. Four pathogenic bacteria—methicillin‐resistant Staphylococcus aureus‐1 (MRSA), Staphylococcus aureus‐2, Escherichid coli, and Pseudomonas aeruginosa—were tested to determine the antibacterial activities of chitosan‐grafted and chitooligosaccharide‐grafted fibers. The results showed that grafting chitosan via imine formation could achieve a higher surface density for amino groups and give higher antibacterial activity to those four bacteria tested. The antibacterial activity for E. coli was the highest and that for MRSA was the lowest among the four bacteria tested. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2977–2983, 2002  相似文献   

2.
This study describes preparation of poly (acrylic acid)‐grafted cotton fibers and release of antibiotic drug gentamicin sulfate from them under physiological conditions. Poly(acrylic acid) has been grafted onto cellulose backbone of cotton fibers via Ce(IV)‐initiated polymerization in aqueous medium. The conditions obtained for optimum grafting were as follows: initiation time 30 min; initiation temperature 37°C; monomer concentration 27.8 mM; grafting temperature 30°C; nitric acid (catalyst) concentration 0.1M. The grafted fibers were characterized by FTIR, TGA, and SEM analysis. The antibiotic drug gentamicin sulfate (GS) was loaded into the grafted fibers by equilibration method and release was studied under physiological conditions. The kinetic release data was interpreted by first‐order kinetic model. Finally, drug‐loaded fibers showed fair antibacterial action against Escherichia coli. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
A viable method for coating of cellulose fiber with quaternarized N‐halamine is reported in this article. The use of quaternary ammonium salt group in combination with N‐halamine group can reinforce the antibacterial activity. The chemical structure of as‐synthesized N‐halamine precursor 4‐(Bromo‐acetic acid methylester)‐4‐ethyl‐2‐ oxazolidinone (BEO) was characterized by 1H‐NMR. The cellulose fibers were characterized by Fourier transform infrared spectra and X‐ray photoelectron spectra. The spectra data confirmed that the quaternarized N‐halamine‐grafted cellulose fibers were successfully obtained. The antibacterial properties of functional fibers were challenged with both Gram positive and Gram negative bacteria. The antibacterial tests and showed that the as‐prepared antibacterial cellulose fibers exhibited powerful and rapid bactericidal performance against both Gram negative E. coli and Gram positive S. aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42702.  相似文献   

4.
To control pathogenic microbial contamination on polymeric material surface, it is pivotal to develop materials with efficacious antimicrobial activity. Two pyridinium N‐chloramine precursors containing a siloxane handle were synthesized, characterized, and grafted onto cotton fabrics. The attenuated total reflectance spectra and scanning electron microscope photo analysis indicated that the cotton fabric surface was successfully modified. The resultant chlorinated fabric samples were challenged against bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Results showed that: (1) the surface modified cotton fabrics displayed satisfactory biocidal efficacy; (2) the precursor structure played a major role on surface grafting and antibacterial activity. This work provides two promising pyridinium N‐chloramine precursors which hold potential application for preparing antibacterial textile materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45323.  相似文献   

5.
Amphoteric terpolymers of acrylic acid (AA), acrylamide (AM), and N,N′‐dimethyl‐N‐ethylmeth‐acryloxylethylammoniumbromide (DMAEA‐EB) with varied compositions P[AA‐AM‐(DMAEA‐EB)] were synthesized by inverse suspension polymerization. The components of P[AA‐AM‐(DMAEA‐EB)] were verified by FTIR spectroscopy. The water absorption ability and antibacterial activity of the copolymer against Escherichia coli(E. coli) and Staphylococcus hyicus(S. hyicus) suspended in sterilized physiological saline were investigated. The introduction of  N+R4 may increase the water absorbency of P[AA‐AM‐(DMAEA‐EB)] in some degree because of the excellent hydrophilicity of  N+R4. The AA‐AM‐(DMAEA‐EB) hydrogels exhibited high antibacterial activity against bacteria tested. The process of adsorption between live bacteria cells and resins was at least partially reversible. A peak of antibacterial efficiency existed with increasing contact time. The resin killed 96.6% E. coli organisms and 90.3% S. hyicus organisms, respectively, within 30 min of contact at dosage of 0.1g. The concentration of DMAEA‐EB has a special effect on the antibacterial activity of the polyampholytic hydrogels, which is different from polycation. It was observed that the antibacterial activity of the resin with 2 mol % of DMAEA‐EB is superior to the copolymers tested with other compositions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Cotton‐based chelate fibers grafted with poly(1‐vinyl‐1,2,4‐triazole) (PVTAZ) side chains were synthesized facilely by ozone‐induced graft polymerization of 1‐vinyl‐1,2,4‐triazole (VTAZ) monomer onto cotton fibers. The synthesis conditions were optimized to improve the yield and mechanical strength of the products. The obtained cotton‐g‐PVTAZ fibers were characterized and evaluated for batch adsorption of heavy metal ions from aqueous solutions. The maximum adsorption capacity of Ag(I), Pb(II), and Cu(II) on the fibers at pH 6.8 was 522, 330, and 184 mg/g, respectively. At 30% graft yield, the Young's modulus of cotton fiber increased about 26.5%, and its adsorption capacities of Ag(I), Pb(II), and Cu(II) increased about 2.6, 1.9, and 1.4 times, respectively. After washed with 0.1 mol/L HNO3 solutions, the adsorbed metal ions were eluted, and the regenerated cotton‐g‐PVTAZ fibers could be used repeatedly for water treatment. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41617.  相似文献   

7.
Poly(ethylene terephthalate) (PET) fibers were grafted with vinyl monomers by utilizing benzoyl peroxide. Grafted PET fibers were modified in optimized conditions with several functional groups such as amine, chlorine, hydrogen peroxide, and triclosan to gain antibacterial feature. The second part of this study comprised examination of the antibacterial features of PET fibers via use of Staphylococcus aureus (ATCC 29213) and Escherichia coli (ATCC 25922) bacteria. Kirby-Bauer test is used to study antibacterial properties. The longest zone diameter for Trc-GMA-g-PET fibers was 56?mm for E. Coli whereas the biggest diameter for S. aureus bacteria was 130?mm with Trc-MMA-g-PET fibers.  相似文献   

8.
Poly(ethylene terephthalate) (PET) fibers were treated with 60Co‐γ‐ray and grafted with acrylic acid. The resulting fibers were further grafted with chitosan (CS) via esterification. Afterward, hyaluronic acid (HA) was immobilized onto CS‐grafting fibers. The antibacterial activity of CS against S. aureus, E. coli, and P. aeruginosa was preserved after HA‐immobilization. After immobilizing HA, the L929 fibroblasts cell proliferation was improved forCS‐grafting PET fiber. The results indicate that by grafting with CS and immobilizing with HA, PET fibers not only exhibit antibacterial activity, but also improve the cell proliferation for fibroblast. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 220–225, 2007  相似文献   

9.
Acrylic acid was grafted to ozone‐treated poly(3‐hydroxybutyric acid) (PHB) and poly(3‐hydroxybutyric acid‐co‐3‐hydroxyvaleric acid) (PHBV) membranes. The resulting membranes were further grafted with chitosan (CS) or chitooligosaccharide (COS) via esterification. These CS‐ or COS‐grafted membranes showed antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, methicilin‐resistant Staphylococcus aureus (MRSA), and S. aureus. The antibacterial activity to E. coli was the highest, whereas the antibacterial activity to MRSA was the lowest among these four bacteria tested. Acrylic acid grafting can increase the biodegradability with Alcaligens faecalis, whereas CS and COS grafting can reduce the biodegradability. In addition, CS‐grafted PHBV membrane showed higher antibacterial activity and lower biodegradability than COS‐grafted PHBV membrane. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2797–2803, 2003  相似文献   

10.
In this article, we present a simple method for synthesizing antibacterial cellulose fibers that were modified with a cationic polymer and immobilized silver chloride (AgCl) particles. Relatively simple techniques of graft polymerization and onsite precipitation were used to fabricate the composites. Scanning electron microscopy images, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, and energy‐dispersive X‐ray spectroscopy confirmed the immobilization of the AgCl particles. The observed inhibition zone of the immobilized AgCl particle composites indicated that the biocidal silver ions were released from the composites in aqueous solution. Compared with cationic‐polymer‐grafted cellulose fibers or AgCl alone, the cationic polymer/AgCl composites showed excellent antibacterial activity against Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42092.  相似文献   

11.
To chemically attach β‐cyclodextrin (CD) molecules to cotton cellulose, N‐methylol‐acrylamide (NMA) was used to synthesize a CD containing monomer, which was then grafted onto cellulose fibers. Initiation of the cotton cellulose backbone with ceric ion before the addition of acrylamidomethyl cyclodextrin (CD‐NMA) monomer was shown to be beneficial for grafting onto cotton cellulose by studying the reactions of ceric ion with CD, CD‐NMA, or cotton cellulose. The amount of chemically attached CD was determined by fluorescence measurements and compared with graft yields. The possibility of textile finishing of CD containing cotton fibers was investigated using benzoic acid as an antibacterial finishing agent or vanillin as an aroma finishing agent. Antibacterial activity of benzoic acid‐treated samples were retained even after 10 laundering cycles and the vanillin fragrance lasted much longer compared with the control sample, suggesting that utilization of CD in functional textile finishing is indeed possible. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1986–1991, 2000  相似文献   

12.
In this study, a continuous “pad‐dry‐cure” process was developed for the first time to graft a cycloamine monomer, 3‐allyl‐5,5‐dimethylhydantoin (ADMH), onto several high performance fibers, including Nomex, Kermel, and a PBI/Kevlar blend. The influence of reaction conditions on the grafting copolymerizaiton was studied. It was found that in the presence of a difunctional monomer, poly(ethylene glycol)–diacrylate (PEG–DIA), ADMH could be readily grafted onto these fibers. After exposure to chlorine, the hydantoin structures in the grafted samples could be transformed into N‐halamines, which provided powerful, durable, and regenerable antibacterial activities against both gram‐negative and gram‐positive bacteria. The influence of hydrophobic/rigid properties of the fabrics on grafting reactions as well as on their antibacterial activities was discussed, and the importance of full contact was emphasized. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1032–1039, 2003  相似文献   

13.
Kraft pulp fibers were used as substrates for the grafting of poly(ε‐caprolactone) (PCL) from available hydroxyl groups through ring‐opening polymerization, targeting three different chain lengths (degree of polymerization): 120, 240, and 480. In a paper‐making process, paper‐sheet biocomposites composed of grafted fibers and neat pulp fibers were prepared. The paper sheets possessed both the appearance and the tactility of ordinary paper sheets. Additionally, the sheets were homogenous, suggesting that PCL‐grafted fibers and neat fibers were compatible, as demonstrated by both Fourier transform infrared spectroscopy microscopy and through dye‐labeling of the PCL‐grafted fibers. Finally, it was shown that the paper‐sheet biocomposites could be hot‐pressed into laminate structures without the addition of any matrix polymer; the adhesive joint produced could even be stronger than the papers themselves. This apparent and sufficient adhesion between the layers was thought to be due to chain entanglements and/or co‐crystallization of adjacent grafted PCL chains within the different paper sheets. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42039.  相似文献   

14.
Modification of cotton fabric has been carried out through chemically induced graft copolymerization of binary mixture of acrylonitrile (AN) and 4‐vinyl pyridine (4‐VP) using ceric ammonium nitrate, (CAN) as initiator. Maximum percentage of grafting (151.28%) has been obtained at [4‐VP] = 0.376 mol L?1 and [AN] = 1.221 mol L?1, [CAN] = 0.0255 mol L?1 and [HNO3] = 0.9585 mol L?1 in 25mL of water at 70°C in 180 min. Post quarternization and phosphorylation reactions of the grey and grafted cotton fabrics have been carried out to study their antibacterial and flame retardant properties respectively. The fabrics have been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The physico‐chemical properties such as wettability, moisture regain, crease recovery and tensile strength of the grey and grafted cotton fabric have also been evaluated. The modified fabric has been shown to exhibit excellent antibacterial and flame retarding properties with improved physico‐chemical properties except for the mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40415.  相似文献   

15.
In this study, new cationic homopolymer and anionic copolymer were synthesized, and deposited onto polyglycolide sutures using a layer‐by‐layer assembly technique. The coated sutures were rendered antibacterial by chlorinating with dilute solution of household bleach solution at pH 7. The chlorination treatment transformed the N? H groups of anionic copolymer into N‐halamine structures. The N‐halamine‐modified sutures were challenged with Staphylococcus aureus and Escherichia coli O157:H7 bacteria at different contact times. The suture with chlorine loading of 0.22% completely inactivated both bacterial strains in 30 min contact time. Fourier transform infrared spectroscopy, scanning electron microscopy, and analytical titration confirmed the successful deposition of the N‐halamine multilayers. The effect of layer‐by‐layer coatings of polyelectrolytes on the chlorine loading and antibacterial efficacy of sutures was evaluated. The straight‐pull and knot‐pull strength tests performed on the sutures reported slight decline in tensile properties after chlorination treatment. The in vitro hemolysis and cytocompatibility tests revealed that the N‐halamines‐based antibacterial sutures were biocompatible. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42483.  相似文献   

16.
Nonleaching acrylic fibers with permanent antibacterial activity were prepared via a combination of copolymerization and a wet‐blend‐spinning method. Specifically, poly[acrylonitrile‐co‐modified poly(hexamethylene guanidine hydrochloride)] [poly(AN‐co‐M‐PHMG)] copolymers containing a covalently connected antibacterial guanidine oligomer were first synthesized via the precipitation copolymerization of acrylonitrile (AN) with a modified poly(hexamethylene guanidine hydrochloride) (M‐PHMG) macromonomer in water. Then, modified acrylic fibers were prepared from a mixture of the copolymer and commercial fiber‐grade AN terpolymer via a wet‐spinning process with dimethyl sulfoxide as the solvent. The influences of the reaction time, temperature, pH value of the medium, and amount of initiator on the copolymerization and the effect of the copolymer content on the mechanical properties and antibacterial activity of the modified acrylic fibers were investigated in detail. The results show that the M‐PHMG macromonomer exhibited a lower reactivity than AN. The poly(AN‐co‐M‐PHMG) copolymer with a PHMG content of 5.49% and an intrinsic viscosity of 11.2 dL/g could be synthesized under optimized conditions. With increasing copolymer content, the tensile strength of the modified acrylic fibers decreased slightly, and the antibacterial activity increased. The modified acrylic fibers with a copolymer content of 50% (i.e., a PHMG content of 2.75%) exhibited both good mechanical properties and excellent antibacterial activity. The additional antibacterial function would surely enlarge the applications of the fiber. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Chitosan and alginate are biopolymers with interesting bioactivity that can be transferred to cotton fibers for medical and health care applications. These polymers in solution can be attached onto cotton fibers by a layer‐by‐layer technique. Confirmation of polymer deposition onto fibers was verified by morphology analysis, coomassie blue dye coloration, and contact angle of water on fibers. Also, weight gain and level of whiteness after each layer deposition were determined. Antimicrobial activity on treated cotton samples against E. coli and S. aureus was evaluated after each layer deposition and high inhibition rate of bacteria growth was observed in samples with chitosan outer layer (~ 100%). Polyelectrolyte layers on cotton fibers not only provide interesting bioactivity by themselves, but can also serve as a matrix for small bioactive molecules. In this regard, a model molecule was added during sample preparation to study its release behaviors in a buffer solution by monitoring with UV–vis spectroscopy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43054.  相似文献   

18.
This work used 2‐hydroxypropyl‐3‐piperazinylquinolinecarboxylic acid methacrylate (HPQM) or silver‐substituted zeolite (SSZ) as antibacterial agents for natural rubber (NR) compounds vulcanized by conventional vulcanization (CV), semi‐efficient vulcanization, and efficient vulcanization (EV) systems. The cure behavior and antibacterial performance of the NR vulcanizates were studied by varying the loadings of HPQM or SSZ, contact times, and vulcanization systems. The antibacterial performance of the rubber compounds was examined by halo test and plate‐count‐agar methods against Escherichia coli (E. coli, ATCC 25922) and Staphylococcus aureus (S. aureus, ATCC 25923) as the testing bacteria. The cure time and crosslink density were dependent on the vulcanization recipe used but were not affected by the addition of HPQM or SSZ. Diphenylguanidine at the level of 1.0 phr (parts by weight per hundred parts of resin) in NR vulcanized by the EV system had the ability to kill the E. coli and S. aureus bacteria. The NR vulcanized by the CV system showed the most pronounced antibacterial performance, as compared with the other two vulcanization systems, via migration and diffusion of HPQM or SSZ onto the NR surfaces, this being identified by the relatively large reduction of contact angle values. The HPQM showed the most preference for NR compounds vulcanized with the CV system with a contact time of 120 min or longer to achieve a bacteria‐killing efficacy of 99.0–99.9%, the efficacy being more pronounced for E. coli bacteria. J. VINYL ADDIT. TECHNOL., 19:123–131, 2013. © 2013 Society of Plastics Engineers  相似文献   

19.
Cotton fabric with excellent antibacterial durability was obtained when treated with chitosan‐containing core‐shell particles without any chemical binders. These amphiphilic nanosized particles with antibacterial chitosan shells covalently grafted onto polymer cores were prepared via a surfactant‐free emulsion copolymerization in aqueous chitosan. Herein, two core‐shell particles, one with poly(n‐butyl acrylate) soft core and another with crosslinked poly(N‐isopropylamide) hard core, were synthesized and applied to cotton fabric by a conventional pad‐dry‐cure process. Antimicrobial activity was evaluated quantitatively using a Shake Flask Method in which the reduction of the number of Staphylococcus aureus cells was counted. The results showed that treated fabric had an excellent antibacterial property with bacterial reduction higher than 99%. The antibacterial activity maintained at over 90% reduction level even after 50 times of home laundering. The fabric surface morphology as well as the effect of latex particles with different core flexibilities on fabric hand, air permeability, break tensile strength, and elongation was investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1787–1793, 2006  相似文献   

20.
Nylon 6 nanofibers containing silver nanoparticles (nylon 6/silver) were successfully prepared by electrospinning. The structure and properties of the electrospun fibers were studied with the aid of scanning electron microscopy, transmission electron microscopy, energy‐dispersive spectroscopy, and X‐ray diffraction. The structural analysis indicated that the fibers electrospun at maximum conditions were straight and that silver nanoparticles were distributed in the fibers. Finally, the antibacterial activities of the nylon 6/silver nanofiber mats were investigated in a broth dilution test against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. It was revealed that nylon 6/silver possessed excellent antibacterial properties and an inhibitory effect on the growth of S. aureus and K. pneumoniae. On the contrary, nylon 6 fibers without silver nanoparticles did not show any such antibacterial activity. Therefore, electrospun nylon 6/silver nanocomposites could be used in water filters, wound dressings, or antiadhesion membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号