首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(lactic acid) (PLA)/nano zinc oxide/copper chlorophyll acid (CCA) antibacterial nanocomposites with excellent mechanical properties were prepared in the presence of a chain extender named tolylene diisocyanate (TDI). The effect of the chain extender on the PLA long chain was confirmed by the increased molecular weight shown in the mass flow rate and gel permeation chromatography. Escherichia coli were adopted to examine the antibacterial ability of the blends. The effect of CCA is also discussed with regard to the enhancement of the antibacterial effect of zinc oxide (ZnO) over E. coli. Scanning electron microscopy and transmission electron microscopy were used to view the agglomeration and dispersion of ZnO in the PLA matrix. Differential scanning calorimetry and thermogravimetric analysis revealed a relatively stable thermal performance of the nanocomposites with and without TDI. A sharp increase in the mechanical properties was also observed after the addition of the chain extender under different processing conditions. Additionally, we found that the nanocomposites with the incorporation of TDI and the masterbatches in batches effectively improved the mechanical properties of PLA/ZnO/CCA without a sacrifice of the antibacterial effect. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41561.  相似文献   

2.
In this study, two‐dimensional organic montmorillonite (OMMT) and one‐dimensional needlelike ZnO were used as flame retardants of polystyrene (PS). Polystyrene/organic montmorillonite (PMT) and polystyrene/organic montmorillonite/zinc oxide nanocomposites (PMZs) with different weight ratios were prepared by melt intercalation. Information on the morphologies and structures of the PS nanocomposites was obtained with Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate that a mixed exfoliated–intercalated structure was observed in the PMT and PMZs. Dynamic mechanical thermal analysis showed that both the storage modulus and glass‐transition temperature values of the PMT and PMZs were significantly improved compared with those of the neat PS. The mechanical property tests showed that the bending modulus values of both PM5 (PS/OMMT weight ratio = 95:5) and PMZs increased compared with that of pristine PS. PMZ1 (PS/OMMT/ZnO weight ratio = 94:5:1) provided no decrease in the tensile strength in comparison with PS. A synergistic effect was observed between OMMT and ZnO; this resulted in improvements in the flame retardancy and dynamic mechanical properties in the PMZs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43047.  相似文献   

3.
Composites of Poly(lactic acid) (PLA) and spherical zinc oxide (ZnO) nanoparticles were prepared using melt processing followed by injection molding. The effect of nanosized ZnO on the molecular structure, thermal properties, dynamic mechanical properties, and flow characteristics of PLA composites were analyzed. Scanning electron microscopy images illustrated the formation of ZnO aggregates through PLA matrix. The molecular weight of PLA‐ZnO experienced a substantial decline by 55%, suggesting the presence of ZnO provoked degradation of PLA during composite preparation. Glass transition temperature of PLA‐ZnO decreased by 18% as compared with pure PLA, confirming the deleterious role of ZnO in PLA. The ZnO nanoparticles acted as a reactant and increased the thermal degradation rate. However, the incorporation of ZnO into PLA increased the crystallinity up to 20% and the storage modulus of composites in glassy state by 10%. The higher peak value of tan δ in composites suggested the more viscous behavior, which was further supported by lower number average molecular weight. The complex viscosity of composites exhibited a large Newtonian region over low shear rate, followed by shear thinning phenomenon. A significant decrease (96%) in complex viscosity was observed with the addition of ZnO into PLA. POLYM. ENG. SCI., 59:1242–1249 2019. © 2019 Society of Plastics Engineers  相似文献   

4.
Foams of poly(lactic acid) (PLA)/octa(epoxycyclohexyl) polyhedral oligomeric silsesquioxanes (ePOSS) composite were prepared by melt‐mixing and solid‐state foaming methods. A systematic and accurate method was applied to evaluate the effects of epoxy‐based POSS on the structure of dispersion, thermal behavior, and rheological properties of PLA composites. The application of secondary electron–electron back‐scattered diffraction technique was used to observe the cellular micromorphology and micro‐phase dispersion in composite foams, simultaneously. The results indicated that secondary dispersion of POSS aggregates occurred in foaming process. The enhanced melt elasticity, dispersity of POSS, and crystallization morphology of PLA/POSS composite had a significant effect on the controlling foaming behavior. Thus, a homogeneous and finer cellular morphology of PLA/POSS composite foam with high expansion ratio was obtained with a proper content of POSS in the composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46399.  相似文献   

5.
It was aimed to investigate how thermal conductivity and stability properties of synthesized thermoplastic elastomers were influenced by zinc oxide (ZnO) additives which differed in size and surface treatment. ZnO particles were prepared by the homogeneous precipitation method by mixing aqueous solutions of hexamethylenetetramine (HMT) and zinc nitrate. The obtained particles were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Poly(vinyl pyrrolidone) (PVP) was used as a modifier to reduce aggregation among the ZnO particles. The composites, prepared by melt compounding method, were characterized in terms of their morphology and thermal properties. Uniformly distributed surface treated particles caused an enhancement in thermal conductivity properties. At 10 wt% ZnO concentration the thermal conductivity of composite reached 1.7 W/mK compared with 0.3 W/mK for the neat polymer. At the same filler loading, ZnO nanoparticles exhibited a greater effect on thermal conductivity compared with submicron sized particles. It was found that the coefficient of thermal expansion of composites decreased at low temperature (55°C) with increasing ZnO content. Thermal gravimetric analysis (TGA) showed that the neat polymer and the composites were resistant up to 340°C without significant mass loss. POLYM. COMPOS., 37:2369–2376, 2016. © 2015 Society of Plastics Engineers  相似文献   

6.
The PLA/OMMT nanocomposites were produced using a melt compounding technique with isopropylated triaryl phosphate ester flame retardant (FR; 10–30 parts per 100 resin). The flammability of the PLA/OMMT composites was evaluated with an Underwriter Laboratory (UL‐94) vertical burning test, and their char morphology was studied using scanning electron microscopy (SEM). The thermal properties of the PLA/OMMT were characterized with a thermogravimetric analyzer (TGA) and a differential scanning calorimeter (DSC). The thermal analyses showed that adding FR reduced the decomposition onset temperature (To) of PLA/OMMT. Both PLA/OMMT/FR20 and PLA/OMMT/FR30 showed excellent flame retardant abilities, earning a V‐0 rating during the UL‐94 vertical burning test. A compact, coherent and continuous protective char layer was formed in the PLA/OMMT/FR nanocomposites. Additionally, the DSC results indicated that the flexibility of the PLA/OMMT composites increased after adding FR due to the FR‐induced plasticization. The impact strength of PLA/OMMT was greatly increased by the addition of FR. Flexible PLA nanocomposites with high flame resistance were successfully produced. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41253.  相似文献   

7.
Poly(lactic acid) (PLA)/Zinc oxide (ZnO) pillared saponite nanocomposites were prepared with ZnO pillared saponite as the green catalyst and lactic acid as monomer through in situ intercalation polymerization method. The optimum polymerization parameters were as follows the addition content of ZnO pillared saponite was 1% (wt) and the reaction was running at 180°C for 7 h. The Fourier transform infrared and 1H NMR results showed that the polymerization sample was PLA; Gel permeation chromatography result showed the PLA had a narrow molecular weight distribution, which arranged from 3,000 to 5,000 and the polydispersity index of PLA was 1.2. Differential scanning calorimetry showed ZnO pillared saponite improved the crystallinity of PLA. Thermogravimetric analysis showed the thermal stability of PLA‐based nanocomposites were improved by ZnO pillared saponite. It was shown that in situ intercalative polymerization kinetics model of PLA/ZnO pillared saponite nanocomposites accorded with third order, and the activation energy of polymerization reaction was 49.3 kJ/mol under the polymerization reaction conditions as follows: the vacuum degree was 0.085 MPa, the temperature was 130°C, and the reaction extent was 2.35∼47.69%, the content of ZnO pillared saponite catalyst was 1 wt%. POLYM. COMPOS., 35:1023–1030, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Two functional polysilsesquioxane microspheres, poly(epoxypropoxy)silsesquioxane (PESQ) and poly(epoxypropoxy/amino)silsesquioxane (PEASQ), were grafted onto commercial polylactic acid (PLA) via functional group reactions through melt processing and directly used as novel chain extenders to improve the thermal stability of PLA. During the whole reaction time of 35 min, the torques of P‐2PESQ and P‐1PEASQ were 60% higher than that of processed PLA. Thermal gravimetric analysis (TGA) revealed that the addition of PESQ or PEASQ into PLA increased the onset temperature for thermal degradation. PEASQ was found to be a potential chain extender for PLA. Compared with the processed PLA, the thermal decomposition temperatures of PEASQ modified PLA increased from 318 to 334°C at 5% weight loss. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41977.  相似文献   

9.
The effect of polyvinyl alcohol (PVA) as a surface coating agent on the antibacterial and thermal properties of polylactic acid (PLA)/ZnO nanocomposites prepared by melt blending was investigated. The ZnO nanoparticles were coated and stabilized with PVA using a solvothermal method. Nanocomposites were prepared with different ZnO nanoparticle content: 1, 3 and 5 wt.%. Electron transmission microscopy and Fourier transform infrared spectroscopy showed the presence of a layer around the nanoparticles and the interaction between nanoparticles and PVA, respectively. DSC analysis revealed that the thermal properties of the nanocomposites were not affected by the coating of ZnO nanoparticles with PVA. The PLA/ZnO nanocomposites with coated nanoparticles presented better antibacterial activity than those containing uncoated nanoparticles.  相似文献   

10.
Polylactide nanocomposites containing different loadings of nanosilica were prepared by employing bulk ring opening polymerization from lactide. Nanosilica was used as such and after surface treatment with different amounts of two distinct silanes. The effects on the properties of the material were evaluated comparing the samples containing organosilane‐modified nanosilica with poly(lactic acid) (PLA) containing unmodified nanosilica. A standard linear PLA and an industrial “film grade” PLA (PLA Natureworks 4032D) were used as reference. Pure silica tends to decrease the molecular weight of the material, deactivating the catalytic system but when silanes are present on the surface, molecular weights are similar to the ones of standard and industrial PLA. Transmission electron microscopy analysis shows that silanes improve the dispersion of the mineral, while rheologic curves suggest that when silanes are present melt viscosity increases markedly at zero shear and decreases faster as the shear rate increases. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The morphology and thermal stability of melt‐mixed poly(lactic acid) (PLA)/poly(hydroxybutyrate‐co‐valerate) (PHBV) blends and nanocomposites with small amounts of TiO2 nanoparticles were investigated. PLA/PHBV at 50/50 w/w formed a co‐continuous structure, and most of the TiO2 nanoparticles were well dispersed in the PLA phase and on the interface between PLA and PHBV, with a small number of large agglomerates in the PHBV phase. Thermogravimetric analysis (TGA) and TGA–Fourier‐transform infrared spectroscopy was used to study the thermal stability and degradation behavior of the two polymers, their blends, and nanocomposites. The thermal stability of PHBV was improved through blending with PLA, whereas that of the PLA was reduced through blending with PHBV, and the presence of TiO2 nanoparticles seemingly improved the thermal stability of both polymers in the blend. However, the degradation kinetics results revealed that the nanoparticles could catalyze the degradation process and/or retard the volatilization of the degradation products, depending on their localization and their interaction with the polymer in question. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42138.  相似文献   

12.
Aluminum‐doped zinc oxide (AZO) conductive powders were successfully obtained through an attractive method based on the pyrolysis of coprecipitated precursors in arc plasma processing. The as‐prepared powders were characterized by the x‐ray diffraction (XRD), transmission electron microscopy (TEM), and UV‐vis spectrum. The results reveal that Al atoms are doped into ZnO lattice successfully and all the samples are polycrystalline with a hexagonal wurtzite structure. Moreover, the particle size of aluminum doped zinc oxide prepared from the plasma pyrolysis was smaller than conventional thermal calcination. Afterward, the synthesized powders were reinforced into polypropylene (PP) matrix and the dispersion of the AZO filler in the PP matrix was observed by SEM. In addition, the effect of AZO concentrations on the electrical and mechanical properties of PP composites was investigated via resistance measurement, tensile and impact tests, respectively. The results show that the electrical and mechanical properties depend on the concentration and dispersion of AZO nanoparticles in the matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41990.  相似文献   

13.
New transparent zinc oxide (ZnO)/silicone nanocomposites with outstanding integrated properties, including a high UV‐shielding efficiency and transparency, bigger thermal conductivity, and lower dielectric constant, were successfully developed; they were prepared by the uniform dispersion of organic modified nano‐ZnO in a silicone matrix through in situ polymerization. The ZnO precursor was prepared by a direct precipitation method, which was then calcinated at different temperatures to produce nano‐ZnO with various morphologies and sizes. The effects of the size, surface nature, and content of nano‐ZnO on the key properties (e.g., optical and dielectric properties, thermal conductivities) of the composites were systematically investigated. The results show that the organic nano‐ZnO prepared by 3‐methacryloxypropyltrimethoxysilane can increase the dispersion of nano‐ZnO in silicone resin, and the interfacial adhesion between inorganic and organic phases, and consequently improve the integrated properties of nanocomposites. The increase of the particle content and size of ZnO in composites can lead to high thermal conductivity and UV‐shielding efficiency but lower visible‐light transparency, so there is an optimum content and size of ZnO in composites to obtain the best integrated properties of the composites. Specifically, the nanocomposite containing 0.03 wt % organic nano‐ZnO with an average size of 46 ± 0.4 nm not only had a high visible‐light transparency, UV‐shielding efficiency, and thermal conductivity but also possessed a low dielectric constant and loss and met the requirements of high‐performance electronic packaging for high‐power light‐emitting diodes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Poly(lactic acid) (PLA) is a biobased polymer made from biomass having high mechanical properties for engineering materials applications. However, PLA has certain limited properties such as its brittleness and low heat distortion temperature. Thus, the aim of this study is to improve toughness of PLA by blending with poly(butylene succinate‐co‐adipate) (PBSA), the biodegradable polymer having high toughness. Polymer blends of PLA and PBSA were prepared using a twin screw extruder. The melt rheology and the thermal property of the blends were examined. Further the blends were fabricated into compression molded parts and melt‐spun fiber and were subjected to tensile and impact tests. When the PBSA content was low, PBSA phase was finely dispersed in the PLA matrix. On the other hand, when the PBSA content was high, this minor phase dispersed as a large droplet. Mechanical properties of the compression molded parts were affected by the dispersion state of PBSA minor component in PLA matrix. Impact strength of the compression molded parts was also improved by the addition of soft PBSA. The improvement was pronounced when the PBSA phase was finely dispersed in PLA matrix. However, the mechanical property of the blend fibers was affected by the postdrawing condition as well as the PBSA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41856.  相似文献   

15.
The paper presents the electrostatic charge dissipative performance of conducting polymer nanocomposite impregnated fabric based on polyaniline (PANI) and zinc oxide nanoparticles (ZnO NPs). Conducting polymer nanocomposites (PANI‐ZnO NPs) were synthesized by in situ chemical oxidative polymerization of aniline by using sodium dodecyl sulfate as surfactant and HCl as dopant. Coating of PANI‐ZnO nanocomposites on the cotton fabric was carried out during polymerization. The interaction of ZnO NPs with the PANI matrix was determined by Fourier transform infrared spectra (FTIR), TGA, XRD, scanning electron Microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and conductivity measurements. The conductivity of PANI‐ZnO NP coated fabric was found to be in the range 10?3 ? 10?6 S cm?1 depending on the loading concentration of ZnO NPs in the polymer matrix. TEM and HRTEM images showed that the PANI‐ZnO nanocomposites had an average diameter of 25–30 nm and were nicely dispersed in the polymer matrix. Antistatic performance of the nanocomposite impregnated fabric was investigated by static decay meter and John Chubb instrument. The static decay time of the film was in the range 0.5 ? 3.4 s on recording the decay time from 5000 V to 500 V. This indicated that the nanocomposite based on PANI‐ZnO nanocomposites has great potential to be used as an effective antistatic material. © 2015 Society of Chemical Industry  相似文献   

16.
In this study, the effects of the incorporation of microsized zinc oxide (ZnO) on multiwalled carbon nanotube (MWCNT)‐reinforced palm‐oil‐based polyester (POPE) were investigated in terms of the UV absorbability, mechanical strength, thermal stability, surface resistivity, and morphology. POPE was prepared by alcoholysis and an esterification process with glycerol, palm oil, and phthalic anhydride. The MWCNTs were dispersed into POPE under in situ conditions during the esterification reaction, whereas ZnO was distributed into the MWCNT‐filled POPE resin with an ultrasound technique. The surface morphology was examined to understand the dispersion of the fillers inside the polymer matrix with field emission scanning electron microscopy. In addition, UV absorbability was observed with a UV–visible spectrophotometer. From the results analysis, the surface resistivity was found to be unchanged by the presence of the ZnO particles. In addition, incorporation of ZnO improved the UV absorbability. Moreover, the tensile strength of the ZnO‐based POPE was found to be slightly lower compared with that of the MWCNT‐filled POPE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44627.  相似文献   

17.
In this study, the thermal conductivity and wear resistance of the polytetrafluoroethylene (PTFE)/boron nitride (BN), PTFE/zinc oxide (ZnO), PTFE/tetra‐needle‐shaped zinc oxide whiskers (T‐ZnO), and PTFE/hybrid filler composites were investigated. Moreover, hot‐press molding was used to prepare the composites, and scanning electron microscopy was used to observe the morphology of the fillers and the friction interface of the composites. The results show that continuous thermally conductive paths could be formed in the PTFE/hybrid fillers (T‐ZnO and BN) composites so that the thermal conductivity of the PTFE was improved through addition of the hybrid fillers. Meanwhile, the synergistic effects of the hybrid fillers were useful for reducing the wear rate of the composites. In addition, for the pure PTFE, abrasive and adhesive wear was found. Compared to the worn surface of the pure PTFE, the worn surface of the PTFE composites filled with ZnO, T‐ZnO, BN, and hybrid fillers presented much smoother surfaces, and slighter ploughing occurred. Therefore, the hybrid fillers improved not only the thermal conductivity but also the wear resistance of the PTFE composites. The data obtained in this study contributed to the construction of a technical foundation for the preparation of composites with a high thermal conductivity and wear resistance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42302.  相似文献   

18.
The electrospinning ability of PLA/PEG system at the melt state was investigated through the viscoelastic parameters obtained from dynamic shear and extensional rheometers. PLA and PEG were melt‐blended at various composition ratios. Effect of PEG concentration on the PLA thermal behavior was studied by the differential scanning calorimetry (DSC). According to DSC and wide‐angle X‐ray diffraction, the PLA crystallinity increased and the crystalline structure became more completed (α‐crystal form) in the presence of PEG. Viscoelastic parameters such as zero‐shear viscosity and relaxation time as an indication of elasticity were obtained. The results revealed enhanced polymer chain mobility and disentanglement ought to plasticizing effect of PEG. The critical content of PEG about 20–30 wt % at which the solid–liquid phase separation occurred was in good agreement with the viscoelastic properties. Hence, more than 20% PEG the elasticity diminished and the melt strength became zero. The interfacial tension of the PLA and PEG estimated through the rheological and morphological parameters evidenced the good miscibility of PLA/PEG system at the melt electrospinnig temperature. While the high viscose samples (η0 > 1800 Pa/s) PLA and PLA/PEG (95/5) were not spinnable at the spinning temperature of 180 °C, blends containing 10–30% PEG were easily spun. The finest and continuous fiber mats were obtained by electrospinning of PLA/PEG (80/20) blend (df = 4.8 ± 0.8 μm). More than the critical concentration of PEG (Φ > 30%), lacking the elasticity suppressed the melt electro‐spinnability of PLA/PEG. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44120.  相似文献   

19.
Poly(lactic acid) (PLA) nanocomposite ternary blends based on unmodified sepiolite were prepared by melt blending using a corotating twin‐screw extruder. Two grafted polymers were used as compatibilizer agents, in an effort to increase the PLA tensile toughness. The influence of incorporating a low‐cost commodity low‐density polyethylene, as dispersed phase to the composites on thermal degradation, and rheological and tensile properties was studied. The morphology of the blends and composites was determined through transmission and scanning electron microscopy techniques. Results showed that the compatibilized blends prepared without clay have higher thermal degradation susceptibility and tensile toughness than those prepared with sepiolite and significant changes in complex viscosity and melt elasticity values were observed between them. The nanocomposite blends exhibited similar thermal degradation, lower tensile strength, and Young's modulus values and increased elongation at break and tensile toughness, complex viscosity, and storage modulus compared with those of the nanocomposite of PLA. These results are related to the clay dispersion, to the type of morphology of the different blends, to the localization of the sepiolite in the different phases, the thermomechanical degradation of the PLA matrix phase during melt blending and the grafting degree of the compatibilizers used. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

20.
In this study, we used a solution casting method to prepare gellan gum (G)-based ternary nanocomposite films containing polyacrylamide (P) and zinc oxide (ZnO) nanoparticles. All composites were prepared using the chemical cross-linker N,N-methylenebisacrylamide. The nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, and scanning electron microscopy. Attenuated total reflectance FTIR revealed strong hydrogen bonding interactions among gellan gum, polyacrylamide, and ZnO, which enhanced the physiochemical, thermal, and mechanical properties of the GPZnO nanocomposites. The addition of ZnO nanoparticles increased the glass transition temperature (Tg: 181.8–196.3°C), thermal stability (T5%: 87.8–96.5°C), and char yield (23.9–29.1%) of the GP composite films, as well as their the tensile strength (from 33.5 to 43.8 MPa) and ultraviolet (UV) blocking properties (~99.2% protection against UVB [280–320 nm]). ZnO significantly influenced the rheological properties of the GP composite. The prepared GP and GPZnO nanocomposites exhibited shear thinning behavior and their viscosities decreased when there is an increase in shear rate. Storage and loss modulus increased with frequency with the addition of ZnO nanoparticles. The GPZnO films exhibited reduced hydrophilicity, moisture content, and water barrier properties compared with the GP film. The GPZnO nanocomposites exhibited effective antimicrobial activity against six different pathogens. The prepared GPZnO films could be useful in biodegradable packaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号