首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aluminum diethyl hypophosphite intercalation-modified montmorillonite flame retardant (AlPi-MMT) is successfully prepared and characterized by FT-IR, SEM, and X-ray diffraction. It is found that thermoplastic polyester elastomer (TPEE) composites incorporating 15 wt% AlPi-MMT flame retardant exhibited better char formation and flame retardant properties compared to those incorporating 15 wt% (4:1, w:w) AlPi and MMT. And the char residual of TPEE/AlPi-MMT at 700°C is 16.17%, which is higher than that of TPEE/AlPi-MMT at 13.94%. and the former can pass UL-94 V-0 rating test while the latter can only pass UL-94 V-1 rating test. Afterwards, the combustion performance of TPEE composites is characterized, and it is found that the heat release and smoke release of TPEE/AlPi-MMT are greatly reduced compared with those of pure TPEE and TPEE/AlPi/MMT, which is a flame retardant and smoke suppressant TPEE composite. Finally, by analyzing the residual char morphology and elements of TPEE composites after combustion, the mechanism of the flame retardant AlPi-MMT to promote char formation and flame retardancy is demonstrated.  相似文献   

2.
The composites based on ethylene–propylene–diene monomer rubber (EPDM) with aluminum hydroxide (ATH), nanoclay, vulcanizing agent, and curing accelerator were prepared by conventional mill compounding method. The thermal stability and the flame retardant properties were evaluated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL‐94 test, cone calorimeter, and smoke density chamber tests. The results indicated that the substitution of the nanoclay in the EPDM/ATH composites increased the 50% weight loss temperature and the LOI value, and reduced the peak heat release rate (pk‐HRR), the extinction coefficient (Ext Coef), the maximal smoke density (Dm), and the whole smoke at the first 4 min (VOF4) of the test specimens. The synergistic flame retardancy of the nanoclay with ATH in EPDM matrix could imply that the formation of a reinforced char/nanoclay layer during combustion prevents the diffusion of the oxygen and the decomposed organic volatiles in the flame. The mechanical properties of the composites have been increased by replacing more of the nanoclays into the EPDM/ATH blends. The best loading of the nanoclay in EPDM/ATH composites is 3 wt %, which keeps LOI in the enough value, the V‐0 rating in the UL‐94 test, and the improved mechanical properties with better dispersion and exfoliation of the nanoclays shown by transmission electron microscopy (TEM) micrographs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2042–2048, 2013  相似文献   

3.
The synergistic flame‐retardant (FR) effect of 1,1′‐bis(4‐hydroxyphenyl)‐metheylene‐bis(9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide‐2‐hydroxypropan‐1‐yl) (DPOH) and aluminum diethylphosphinate (AlPi) composites on glass fiber reinforced polyamide 66 (PA) was investigated by limiting oxygen index (LOI) tests, vertical burning (UL94) tests, and cone calorimeter tests. DPOH/AlPi system with 1:1 mass ratio increased UL94 ratings, suppressed heat release rate and increased residue yields of PA composites, and DPOH/AlPi system also imposed high LOI values and lower total heat release values to PA composites. All these results verified excellent synergistic FR effect between DPOH and AlPi. The reason of DPOH/AlPi system with higher flame‐retardant efficiency was caused by the quenching effect as good as that of DPOH and also by the higher charring effect than that of AlPi. DPOH/AlPi system possesses good flame retardancy in gas phase and also the strengthened FR effect in condensed phase compared with DPOH and AlPi alone, which led to excellent synergistic FR effect between the two components DPOH and AlPi. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45126.  相似文献   

4.
A novel flame‐retardant (SPDH) containing phosphorus was synthesized through the reaction of 10‐(2,5‐dihydroxyphenyl)‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and synthesized intermediate product 3,9‐dichloro‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro[5.5] undecane‐3,9‐dioxide, which was used for optimizing the flame retardancy of ethylene‐vinyl acetate copolymer (EVM) rubber/aluminum hydroxide (ATH) composites. The microstructure of SPDH was characterized and determined by Fourier transform infrared and nuclear magnetic resonance spectroscopy. Thermogravimetric analysis (TGA) showed that SPDH had good charring effect at high temperature (600°C). The flame retardancy of the optimized EVM/ATH composites by SPDH was investigated by limiting oxygen index (LOI), cone calorimeter, and UL‐94 vertical burning tests. A higher LOI value (29.8%) and better UL‐94 rating (V‐0) can be achieved for the optimized EVM/ATH composite (EVM‐7) than EVM/ATH composite without SPDH (EVM‐3) with the total loading of additives. The heat release rate decreased and residual mass increased gradually as the loading of SPDH increased for the optimized EVM/ATH composites. There existed distinct synergistic flame‐retardant effect between SPDH and ATH in EVM matrix. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
Acrylonitrile butadiene rubber (NBR) foams compounded with various halogen‐free flame retardants were prepared. The influence of nonhalogen flame retardants on the flame resistance and foaming properties of the NBR compounds were investigated. The foaming properties (expandability 980%–1050%, closed‐cell structure) of NBR compounds with expandable graphite (EG) and ammonium polyphosphate (APP) flame retardants were similar to the NBR base compounds which contained primarily aluminum hydroxide (ATH). The heat release capacity (HRC) ranged from 10 to 74 J/g‐K, the average heat release rate (A‐HRR) ranged from 8 to 60 kW/m2, and the total heat release (THR) ranged from 2.6 to 7.3 MJ/m2 for the nonhalogenated NBR foams with closed‐cell structure and were significantly decreased upon increasing the amounts of flame retardants. This reduction is attributed to the hard char formation and production of water from the interaction with ATH. The limiting oxygen index (LOI) and time to ignition (TTI) show opposite results. The smoke density (0.050–0.037) of the NBR foams with EG flame retardant was decreased when compared to the NBR foam (0.107). The EG flame retardant was more effective than the phosphorus/nitrogen flame retardants in reducing the HRR and smoke density. The use of both ATH and EG is very effective in improving flame resistance. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

6.
将次磷酸盐?环四硅氧烷双基化合物(MVC?AlPi)与二乙基次磷酸铝(AlPi)复配阻燃聚酰胺6(PA6)。目的是考察外加的富磷酸铝化合物中磷酸铝基团和环四硅氧烷基团之间的配比对PA6阻燃效率的影响。结果表明, PA6/8.8 %AlPi/2.2 %MVC?AlPi具有协同屏障效应,可使复合材料的极限氧指数(LOI)值提高到31.5 %,并通过UL 94 V?0级别。相比于纯PA6,PA6/8.8 %AlPi/2.2 %MVC?AlPi的热释放速率峰值(PHRR)降幅近50 %、总热释放量(THR)也降低了15 %,PA6/8.8 %AlPi/2.2 %MVC?AlPi的残炭率虽略低于11 %MVC?AlPi,却形成了内层坚硬,外层类陶瓷化的双层炭层结构,MVC?AlPi、AlPi与PA6的相互作用可以锁定更多P、C碎片,促进由含硅富磷残渣组成的屏障保护炭层的形成。在阻燃剂添加总量不变的情况下,通过调节各组分的比例,发挥出更好的协同阻燃效果。  相似文献   

7.
Rigid polyurethane foam (PUF) filled with mixture of alumina trihydrate (ATH) and triphenyl phosphate (TPP) as fire retardant additive was prepared with water as a blowing agent. In this study, the ATH content was varied from 10 to 100 parts per hundred polyol by weight (php), and TPP was used at a higher loading of ATH (75 and 100 php) in a ratio of 1 : 5 to enhance the processing during PUF preparation. The effects of ATH on properties such as density, compressive strength, morphological, thermal conductivity, thermal stability, flame‐retardant (FR) behavior, and smoke characteristics were studied. The density and compressive strength of the ATH‐filled PUF decreased initially and then increased with further increase in ATH content. There was no significant change in the thermal stability with increasing ATH loading. We determined the FR properties of these foam samples by measuring the limiting oxygen index (LOI), smoke density, rate of burning, and char yield. The addition of ATH with TPP to PUF significantly decreased the flame‐spread rate and increased LOI. The addition of TPP resulted in easy processing and also improved FR characteristics of the foam. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
A novel flame-retardant (FR) epoxy (EP) composite based on melamine cyanurate (MCA) and aluminum diethylphosphinate (AlPi) was successfully prepared and its flame retardancy was systematically investigated. Firstly, the facile surface modification was adopted to effectively solve the aggregation of FRs in EP matrix during the curing process. The influence of modified MCA/AlPi on the fire behavior and thermal degradation of EP were studied by using limiting oxygen index (LOI), vertical burning (UL94) tests, thermogravimetric analysis and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The experimental results showed that EP/MCA/AlPi composite achieved UL-94V0 rating and LOI value of 33.0% at the optimum mass fraction of MCA/AlPi of 2/1. The chemical composition and structure of residue were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry and scanning electron microscopy. MCA mainly acted in gaseous phase during the initial combustion stage, and therefore to provide enough time for the formation of carbon layer in condenses phase. As a result, the synergistic effect of MCA and AlPi can effectively promote the formation of the char layer and the FR efficiency. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47223.  相似文献   

9.
Sulfamic acid‐intercalated MgAl‐layered double hydroxide (SA‐LDH) was prepared and added with aluminum phosphinate (AlPi) into polyamide 11 (PA11). The results showed that AlPi/SA‐LDH made a positive contribution to both flame retardancy and thermostability, and the effect was demonstrated with the limiting oxygen index (LOI), vertical burning tests (UL‐94), cone calorimetry (CONE), and thermogravimetric analysis (TGA). The char morphologies were observed by SEM, and its chemical composition was investigated by Fourier transform infrared spectroscopy (FTIR). The decomposition mechanism was examined by TGA‐FTIR. The results showed that the LOI of PA11 was only 23.0 and cannot pass any UL‐94 rating. The addition of 20% AlPi increased the LOI to 31.5 and passed the UL‐94 V‐1 rating, and AlPi/SA‐LDH 15%/5% increased the LOI to 32.4 and also passed the UL‐94 V‐1 rating. The CONE results revealed that 20% of either AlPi or AlPi/SA‐LDH brought about a 30% decrease in the peak heat release rate (pHRR). The contribution of SA‐LDH to flame behavior was especially reflected in the postponement of pHRR. SEM showed that the char morphologies became denser after SA‐LDH incorporation. The improvement in thermal stability of the AlPi/SA‐LDH combination was documented by TGA in both N2 and air atmospheres. The mechanical performance deterioration caused by AlPi was partly improved by SA‐LDH. The storage modulus (E′) below the Tg of AlPi/SA‐LDH 15%/5% was about 300 MPa higher than with 20% AlPi. This was attributed to a compatibility improvement. The interaction forces among PA11, AlPi, and SA‐LDH were probed by X‐ray photoelectron spectrometry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43370.  相似文献   

10.
A novel flame‐retardant chain extension agent (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide)‐3,5‐triglycidyl isocyanurate defined as DOPO‐TGIC was synthesized, and its chemical structure was well characterized and confirmed. The effect of DOPO‐TGIC as a synergistic agent on the flame retardancy, rheology, thermal and mechanical properties of polyamide 6/aluminum diethylphosphinate (PA6/AlPi) composites were investigated in details. The results demonstrated that PA6/AlPi/DOPO‐TGIC composites (1.6 mm) successfully passed UL‐94 V‐0 rating with the limiting oxygen index value of 30.5% when the total loading amount of AlPi/DOPO‐TGIC was 10 wt%. In order to achieve the equal flame‐retardant level, the individual AlPi was required 14 wt%. The incorporated DOPO‐TGIC improved the complex viscosity of PA6/AlPi/DOPO‐TGIC composites due to the chain extending reaction between epoxide groups in DOPO‐TGIC and the terminal groups of PA6 matrix. The mechanical performance of PA6/AlPi/DOPO‐TGIC composites was also improved compared with that of PA6/AlPi composites. DOPO‐TGIC stimulated to the formation of more sufficient and compact char layer during combustion. The higher melt viscosity and compact char layer of PA6 composites effectively constrained the volatilization of flammable gases, thus the heat release was reduced. Consequently, the introduction of DOPO‐TGIC simultaneously enhanced the flame retardant and mechanical properties of PA6/AlPi/DOPO‐TGIC composites compared with that of PA6/AlPi composites. POLYM. ENG. SCI., 59:E206–E215, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
A series of flame retarding rigid polyurethane foam (RPUF) composites based on expandable graphite (EG) and aluminum hypophosphite (AHP) were prepared by the one‐pot method. The properties were characterized by limiting oxygen index (LOI) test, cone calorimeter test, thermogravimetric analysis (TGA), real‐time Fourier transform‐infrared spectra (RT‐FT‐IR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), etc. The results indicate that both EG and AHP could enhance the flame retardency of RPUF composites. Besides, the flame retardant effect of EG was better than that of AHP. The results also show that partial substitution of EG with AHP could improve the flame retardency of RPUF, and EG and AHP presented an excellent synergistic effect on flame retardancy. What is more, compared with RPUF/20EG and RPUF/20AHP, the heat release rate (HRR) and total heat release (THR) of RPUF/15EG/5AHP were lower.TGA results indicate that partial substitution of EG with AHP could improve the char residue which provided better flame retardancy for RPUF composites. The thermal degradation process of RPUF composites and the chemical component of the char residue were investigated by RT‐FT‐IR and XPS. And the results prove that RPUF/15EG/5AHP had higher heat resistance in the later stage. Compared with the RPUF composites filled with EG, a better cell structure and mechanical properties were observed with the substitution of AHP for part of EG. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42842.  相似文献   

12.
In this article, co‐microencapsulated ammonium polyphosphate (APP) and aluminum hydroxide (ATH) [M(A&A)] was prepared by using 4,4'‐diphenylmethane diisocyanate (MDI) and melamine (MEL) via in situ surface polymerization method. The chemical composition of M(A&A) was confirmed by Fourier transform‐infrared spectra (FT‐IR). Thermal behavior and surface morphology of M(A&A) were systematically analyzed by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. Water solubility tests indicate that water solubility of M(A&A) decreases greatly than un‐microencapsulated ones. Besides, flame retardant properties of polypropylene (PP) compositing with M(A&A) were investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94) and cone calorimeter. The results demonstrate the LOI value of PP composites is improved after combining with co‐microencapsulated flame retardants. Compared with PP/A&A, the peak heat release rate of PP/M(A&A) decreases from 210 to 120 kW/m2 at the same flame retardant loading level. Moreover, in order to investigate the flame retardant mechanism, the char residue of PP composites after combustion was studied by optical photos, X‐ray photoelectron spectroscopy (XPS) spectra and FT‐IR. POLYM. COMPOS., 35:715–729, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
采用氢氧化铝(ATH)和两种有机改性蒙脱土(OMMT-C、OMMT-F)对沥青进行阻燃抑烟改性,旨在提高隧道沥青路面的阻燃抑烟性能。通过测试三大指标来评价ATH/OMMT复合改性沥青的常规性能,测试极限氧指数(LOI)与烟密度(SDR)来评价其阻燃抑烟性能,利用动态剪切流变(DSR)试验研究其流变性能。基于综合指数法优选出ATH/OMMT复合改性沥青的最佳复掺配比,通过热重(TG)试验分析了ATH/OMMT复合改性沥青的热解燃烧特性并建立了阻燃性能预测模型。研究结果表明,ATH/OMMT复合阻燃剂提高了沥青的稠度与软化点,降低了沥青的低温性能。当ATH掺量为10%(质量分数),OMMT-C掺量为3%(质量分数)时,复合改性沥青的综合性能最优,其极限氧指数大于23%,符合路用阻燃沥青的标准,同时烟密度相对基质沥青降低了33.9%,初始分解温度较基质沥青提高了3~6 ℃,分解残余量提高率最高可达61.3%。ATH/OMMT-C复合阻燃剂通过阻隔热交换通道提高了沥青的阻燃抑烟性能,通过增加沥青的弹性成分提高了沥青的复数模量与车辙因子,以及高温抗变形能力。  相似文献   

14.
The flammability characterization and synergistic flame‐retardant effect of Fe‐montmorillonite (Fe‐OMT) in the ethylene‐vinyl acetate/aluminum hydroxide (EVA/ATH) compounds were studied using limiting oxygen index (LOI), UL‐94 test, cone calorimeter, microscale combustion calorimetry (MCC), and thermogravimetric analysis (TGA). The results showed that addition of Fe‐OMT increases the LOI value and improves the UL 94 rating. Cone calorimeter data indicate that the addition of Fe‐OMT greatly reduced the heat release rate and carbon monoxide production rate. Furthermore a compact char residue formed on the surface of the sample with a suitable of Fe‐OMT during the combustion. The MCC results indicate that addition of Fe‐OMT reduced the heat release rate and catalyzed the decomposition of EVA. The TGA data showed further evidence that Fe‐OMT can catalyze carbonization reactions. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
A composite foam, polyurethane–melamine formaldehyde (PU/MF) foam, was prepared through foaming PU resins in the three‐dimensional netlike skeleton of MF foam. The chemical structure, morphology, cell size and distribution, flame retardancy, thermal properties and mechanical properties of such composite foam were systematically investigated. It was found that the PU/MF foam possessed better fire retardancy than pristine PU foam and achieved self‐extinguishment. Moreover, no melt dripping occurred due to the contribution of the carbonized MF skeleton network. In order to further improve the flame retardancy of the composite foam, a small amount of a phosphorus flame retardant (ammonium polyphosphate) and a char‐forming agent (pentaerythritol) were incorporated into the foam, together with the nitrogen‐rich MF, thus constituting an intumescent flame‐retardant (IFR) system. Owing to the IFR system, the flame‐retardant PU/MF foam can generate a large bulk of expanded char acting as an efficient shielding layer to hold back the diffusion of heat and oxygen. As a result, the flame‐retardant PU/MF foam achieved a higher limiting oxygen index of 31.2% and exhibited immediate self‐extinguishment. It exhibited significantly reduced peak heat release rate and total heat release, as well as higher char residual ratio compared to PU foam. Furthermore, the composite foam also showed obviously improved mechanical performance in comparison with PU foam. Overall, the present investigation provided a new approach for fabricating a polymer composite foam with satisfactory flame retardancy and good comprehensive properties. © 2018 Society of Chemical Industry  相似文献   

16.
A macromolecular nitrogen-phosphorous flame retardant combined with expandable graphite (EG) was employed to flame-retard expanded polystyrene foam. As the intumescent char formation (catalyzed by the flame retardant) temperature overlaps with the expanding temperature of EG, their synchronous expansion occurs. In this process, the EG sheets can be embedded in the intumescent char and pushed forward to the surface with inflation of the composite chars, which greatly enhances the compactness and strength of the char layer, and better shields the heat and oxygen, as well as promotes the interactions of the degraded products of the polymer and the flame retardant. The limiting oxygen index (LOI), vertical flame and cone calorimeter tests showed that good flame retardance for the flame retardant EPSF could be achieved (LOI: 33.9%, UL94-V0 (1.6 mm) and remarkably decreased heat release rate). A series of characterizations—including char morphology observation scanning by electron microscope, surface elements determination through X-ray photoelectron spectroscopy, char strength test and thermogravimetric analysis—were performed to verify the synergistic mechanisms based on the synchronous expansion of the composite chars.  相似文献   

17.
以甲基膦酸二甲酯(DMMP)、10-(2,5-二羟基甲苯)-10-氢-9-氧杂-10-磷酰杂菲-10-氧化物(DOPO-HQ)、可膨胀石墨(EG)和氢氧化铝(ATH)构建了四元阻燃复合体系,并通过热失重分析仪(TG)、锥形量热仪、极限氧指数分析仪等研究了其在硬质聚氨酯泡沫(RPUF)中的阻燃行为。结果表明,四元阻燃体系能够在较宽温度区间内发挥逐级释放的协同阻燃效应;DOPO-HQ能够与EG/DMMP/ATH三元阻燃体系形成加合阻燃效应,使得RPUF复合材料的极限氧指数(LOI)提升至30.8%;与采用EG/DMMP/ATH三元阻燃体系的RPUF复合材料相比,采用加入DOPO-HQ的四元阻燃体系的RPUF复合材料的热释放速率峰值(PHRR)、总热释放量(THR)、总烟释放量(TSR)均有所下降,残炭率得到了进一步提升,说明DOPO-HQ与EG/DMMP/ATH所构建的四元阻燃体系在成炭性方面具有协同效应;此外,通过扫描电子显微镜(SEM)对残炭进行表征,验证了四元阻燃体系在凝聚相中能够发挥优异的成炭阻隔效应,并能够在燃烧的初期、中期和末期发挥逐级释放阻燃效应。  相似文献   

18.
利用精制后的碱木质素部分代替聚醚多元醇制备碱木质素基聚氨酯泡沫材料(PUF/木质素)。将次磷酸铝(AHP)作为阻燃剂添加到材料中制备PUF/木质素/AHP材料。通过极限氧指数(LOI)测试PUF/木质素/AHP材料的阻燃性能,通过热重分析(TG)研究了材料的热降解行为和成炭性能,通过锥形量热(CONE)测试和扫描电子显微镜(SEM)分别研究了PUF/木质素/AHP材料的燃烧行为和残炭的表面形貌。结果表明:当碱木质素添加量为聚醚多元醇的5%、AHP的添加量为30%时,PUF/5%木质素/30%AHP材料的LOI值达到了25.6%,同时降低了材料的热分解速率和热释放量,促进了材料的成炭。当AHP受热分解时,产生的PO自由基会捕捉材料燃烧时产生的氢氧自由基,从而抑制燃烧反应,同时产生磷酸铝和焦磷酸铝,形成致密的炭层阻隔物质和能量的传递,阻止材料进一步燃烧,从而提高材料的阻燃性能。  相似文献   

19.
Novel thermoplastic vulcanizate (TPV) based on two EVAs with different VA contents, ethylene vinyl acetate rubber (VA content =50 wt%; EVM) and ethylene VA copolymer (VA content =28 wt%; EVA28), has been successfully prepared by dynamic vulcanization in our previous work. In this study, we have incorporated aluminum hydroxide (ATH) into the TPV based on EVM/EVA28 for the purpose to fabricate halogen‐free flame retardant TPVs with high flexibility. The morphology and the properties of the ATH filled TPVs have been investigated. It was found that the ATH particles were finely dispersed into the crosslinked EVM phase, while few ATH particles were observed in the EVA28 matrix. The fabricated TPVs with 45% ATH exhibit LOI of 30.2%, significantly prolonged ignition time, and drastically reduced heat release rate. At the same time, the TPVs show excellent stretchability (>300% elongation at break), nice elasticity (only about 30% remnant strain at 100% stretching), high strength, and good flexibility as well. We have attributed the multifunctional performance of the ATH filled TPVs to both the fine phase structure of the base TPVs and the selective dispersion of ATH fillers in the rubber phase. POLYM. COMPOS., 36:1258–1265, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
The effects of zinc borate (ZB), aluminum trihydrate (ATH), and their mixture on the flame‐retardant and smoke‐suppressant properties of poly(vinyl chloride) (PVC) as well as their mechanism for flame retardancy and smoke suppression were studied through the limiting oxygen index (LOI) test, smoke density test, TGA, GC–MS, and SEM. The results show that incorporation of a small amount of ZB, ATH, and their mixture can greatly increase the LOI of PVC and reduce the smoke density of PVC during combustion. The mixture of ZB with ATH has a good synergistic effect on the flame retardance and smoke suppression of PVC. TGA and GC–MS analyses results show that incorporation of a small amount of ZB, ATH, and their mixture greatly promotes the char formation of PVC and decreases the amount of hazardous gases such as benzene and toluene released in PVC during combustion. Their mechanism is also proposed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3119–3127, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号