首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three surface modifiers, namely, aminopolyether (D2000), phenyl isocyanate, and poly(ethylene glycol) (PEG800), which have different affinities to the hard and soft segments in polyurea, were used to synthesize functionalized graphite oxides (GO). The PEG800‐modified (PEG800‐GO) and phenyl isocyanate‐modified (i‐GO) GOs were highly exfoliated and dispersed in DMF, whereas the D2000‐modified GO (D2000‐GO) produced some precipitates. Polyurea/GO composites were prepared using a solution‐blending method, in which functionalized GO platelet suspensions in dimethyl formamide were used. Results show that PEG800‐GO and i‐GO are uniformly dispersed throughout the polymer matrix on a nanoscale, whereas D2000‐GO forms visible aggregates. The well‐dispersed GO platelets improved the thermal stability and mechanical properties of polyurea. PEG800‐GO, which has a strong affinity for the soft segments, shows a more significant reinforcing effect. At 2.0 wt % GO loading, the tensile strength of polyurea was enhanced by ~75%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39775.  相似文献   

2.
In this study, polypropylene (PP) composites reinforced with short glass fibers (GF) and exfoliated graphite nanoplatelets were obtained by melt compounding followed by injection molding. Morphological observations and quasi‐static tensile tests were carried out in order to investigate how the morphology and the mechanical properties of the composites were affected by the combined effect of two fillers of rather different size scales (i.e., micro‐ and nanoscale). The results indicate that the dispersion of the nanofiller in the PP matrix promoted the formation of a stronger interface between the matrix and GF, as indicated by the increase of the interfacial shear strength determined by the single‐fiber microdebonding test. Concurrently, a significant improvement of the tensile modulus and impact strength of the composites was observed, with small changes in the processability of hybrid composites compared to that of GF composites, as confirmed by rheological measurements. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41682.  相似文献   

3.
Carbon nanotubes (CNTs) and graphene nanosheets (GNSs) were used as fillers in epoxy composites with the aim of increasing the electrical and thermal conductivities of the composites. The filling of pristine CNTs produced the highest electrical conductivity (σ), whereas a high CNT functionalization and the two‐dimensional planar structure of GNSs were promising for improving the thermal conductivity. A combination of CNTs and GNSs exploited the advantages of both. When the CNT fraction was larger than 50 wt %, a higher σ was obtained. When a small amount of functionalized CNTs was added to the GNSs, the thermal conductivity was also increased. The rheological measurements revealed the lowest complex viscosity for the GNS filling and showed the exciting advantages of an easy processing. As a result, the mixed filling also exhibited a much lower viscosity than the pure CNT fillings. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Electrical conductivity developments of polypropylene (PP)/multiwall carbon nanotube (MWNT) and polybutene (PB)/MWNT composites were carried out with polyethylene oxide (PEO) phase‐separation behavior for the polymeric materials. The low conductivity (8.47 × 10?8 S cm?1) of PP(98%)/MWNT (2%) was drastically increased up to 1.56 × 10?3 S cm?1 by only 2% PEO(96%)/MWNT(4%) loading. The drastic improvement originated from the formation of an electrical connector structure with the PEO/MWNT domain. The PB(93%)/MWNT(7%) conductivity was also improved by the PEO(92%)/MWNT(8%) loading although the conductivity improvement effect was lower than that of the PP/MWNT. The Raman spectra showed that the MWNT dispersity in the PB was poorer than that in the PP, resulting in the formation of a PEO/MWNT connector structure only at higher loading. In addition, a PEO/carbon black composite was able to produce the connector structure for the PP/MWNT as well as the PEO/MWNT. These results indicated that the highly conductive composites could be produced with smaller MWNT amounts. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
As a result of van der Waal's interactions, carbon nanotubes (CNTs) tend to assemble into bundle/rope structures. It is essential to de‐bundle and exfoliate CNTs in polymer solutions in order to utilize their reinforcement potential as far as possible. In this study, a variety of different processing conditions were used to prepare polyacrylonitrile/CNTs composite solutions. The CNT bundle diameter, length, and macro‐scale dispersion homogeneity in those solutions were compared. It was observed that the CNT type, solvent type, and polymer concentration were important factors to determine the CNT bundle sizes in the solutions. The results are expected to be beneficial to obtain well‐dispersed polymer/CNT nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42177.  相似文献   

6.
In this study, nanocomposites of polypropylene (PP) with various loadings of multi‐wall carbon nanotubes (MWCNT) and graphene nanoplatelets (GnP) were formed by masterbatch dilution/mixing approach from individual masterbatches PP‐MWCNT and PP‐GnP. Melt mixing on a twin‐screw extruder at two different processing temperatures was followed by characterization of morphology by transmitted‐light microscopy including the statistical analysis of agglomeration behavior. The influence of processing temperature and weight fractions of both nanofillers on the dispersion quality is reported. Thermal properties of the nanocomposites investigated by DSC and TGA show sensitivity to the nanofillers weight fraction ratio and to processing conditions. Electrical conductivity is observed to increase up to an order of magnitude with the concentration of each nanofiller increasing from 0.5 wt % to 1.0 wt %. This is related with a decrease of electrical conductivity observed for unequal concentration of both nanofillers. This particular behavior shows the increase of electrical properties for higher MWCNT loadings and the increase of thermo‐mechanical properties for higher GnP loadings. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42793.  相似文献   

7.
Syndiotactic polypropylene (SPP)/ethanol swelled microfibrous cellulose (MFC) composite was prepared by a melting mixer, and its morphology and tensile properties were studied. The scanning electron microscope microphotograph did not show the aggregated MFC part up to the 40 wt % MFC loading content, and the Young's modulus was exponentially increasing with the increase of the MFC loading content. These results suggested that the MFC was well‐dispersed in the SPP matrix by an ethanol surfactant work. The Young's modulus was much higher than that of the composite with commonly used fibrous cellulose and moreover, exceeded the theoretical one obtained from the Halpin‐Tsai equation. The differential scanning calorimetry and wide‐angle X‐ray diffraction measurements showed that the MFC acted as a good α‐nucleation agent for SPP. It was found that the excessive Young's modulus of the MFC composite was originated from an increase of that of the SPP matrix induced by the α‐nucleation effect. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
In this study, the influence of β‐nucleation agent (β‐NA) on the morphology and properties of multi‐walled carbon nanotube (MWCNT) filled isotactic polypropylene (iPP) composites was explored in details. The results show that the incorporation of β‐NA has promoted the dispersion of MWCNT in the iPP matrix, which is profitable for improving the thermal stability and conductivity properties of MWCNT‐iPP composites. Besides, the 0.05 wt % β‐NA nucleated samples exhibit higher impact toughness than that of un‐β‐NA‐nucleated ones. Further SEM observations show that the morphology of MWCNT changes from large agglomerations to small clusters with doping of β‐NA. The main reason is that the incorporation of β‐NA (TMB‐5) in MWCNT filled iPP matrix has led to the formation of a charge‐transfer complex. Some of these clusters act as nucleation sites for inducing crystallization of α spherulites, which have a compete growth with β‐NA induced β crystals. Meanwhile, other clusters exist in the inter‐lamella amorphous phase of β crystals, some of them even combine two adjacent β spherulites. Accordingly, a large conductive network comes into being. Based on the investigated results, a mechanism model is proposed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
In this study, multiwall carbon nanotubes (MWNTs) functionalized by m‐xylylenediamine is used as thermal conductive fillers to improve their dispersibility in epoxy resin and the thermal conductivity of the MWNTs/bisphenol‐A glycidol ether epoxy resin composites. Functionalization with amine groups of MWNTs is achieved after such steps as carboxylation, acylation and amidation. The thermal conductivity, impact strength, flexural strength, and fracture surfaces of MWNTs/epoxy composites are investigated with different MWNTs. The results show that m‐xylylenediamine is successfully grafted onto the surface of the MWNTs and the mass fraction of the organic molecules grafted onto MWNTs is about 20 wt %. The thermal conductivity of MWNTs/epoxy composites is further enhanced to 1.236 W/mK with 2 wt % m‐MWNTs. When the content of m‐MWNTs is 1.5 wt %, the impact strength and flexural strength of the composites are 25.85 KJ/m2, 128.1 MPa, respectively. Scanning electron microscope (SEM) results show that the fracture pattern of composites is changed from brittle fracture to ductile fracture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41255.  相似文献   

10.
Honeycomb cores (HCs) coated with graphite and multiwalled carbon nanotubes (MWCNTs) filled in a thermoplastic resin are proposed as microwave absorbers. The MWCNT contents varied from 0.2 to 0.6 wt % in a graphite‐filled (15 wt %) thermoplastic resin. The HCs were coated with three different types of coating materials for the sake of comparison: graphite, MWCNTs, and graphite plus MWCNTs. The dielectric properties [the real and imaginary parts of complex permittivity (ε′ and ε″, respectively)] and reflection loss (RL) of all of the coated HCs were measured and compared. We observed that the permittivities and RL increased significantly with increased weight percentage of the MWCNTs in the graphite‐filled thermoplastic resin. The RL measurements showed a maximum loss of ?20 dB around 7 GHz and a bandwidth of 2.7 GHz at ?10 dB in the HCs coated with the 0.4 wt % MWCNT plus graphite. There was also a shift in the RL peak position from the x band to the c band after the increase of MWCNT content. We also observed from the measurements that a combination of graphite and MWCNTs resulted in a broadband microwave absorber; a bandwidth of 13 GHz was observed for 80% RL when the MWCNT content increased to 0.6 wt % in the graphite‐incorporated resin. The possible mechanism that increased RL with the incorporation of MWCNTs in the graphite‐mixed thermoplastic resin is discussed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40891.  相似文献   

11.
Linear low‐density polyethylene (LLDPE) compounds containing 10 wt % graphite fillers were rotationally molded into flat sheets. Flame retardancy was studied using cone calorimeter tests conducted at a radiative heat flux of 35 kW/m2. Only the expandable graphite, an established flame retardant for polyethylene, significantly reduced the peak heat release rate. Compared with the neat polyethylene, it was easier to ignite the LLDPE composites containing carbon black, expandable graphite, and exfoliated graphite. However, rather unexpectedly, the inclusion of flake graphite increased the time to ignition by up to 80%. Simulations conducted with the ThermaKin numerical pyrolysis software suggest that increased reflectivity was mainly responsible for this effect. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41472.  相似文献   

12.
Atmospheric plasma treatment (APT) was used to surface‐activate graphite nanoplatelets (GnP) as well as highly graphitic P100 fibers used to manufacture composites. X‐ray photoelectron spectroscopy showed an increase in the O/C ratio of the treated surfaces when using either CO or O2 as the active gas, whereas CO exhibited less damage to the treated reinforcement carbon material. APT of P100 fibers resulted in a 75% increase in composite tensile strength when compared to composites using untreated fibers. Surface treatment of GnPs also resulted in GnP/epoxy composites with significantly higher glass transition temperatures (Tg's) and 50% higher flexural strengths than those with no surface treatment because of stronger particle‐to‐resin coupling, which was also evidenced by the fracture surfaces. The effect of GnP loading concentration and plasma treatment duration was also evaluated on the tensile strength of fiber‐reinforced composites. The addition of untreated GnP filler resulted in a decrease in strength up to the 1% loading. However, higher loading conditions resulted in a 20% improvement because of GnP orientation effects. Fracture surfaces suggest that the fibers provided a mechanism for the GnPs to orient themselves parallel to the fiber axis, developing an oriented matrix microstructure that contributes to added crack deflection. Incorporating surface‐treated GnPs in these composites resulted in tensile strengths that were as high as 50% stronger than the untreated systems for all loading conditions. Increased GnP‐to‐matrix bonding as well as enhanced orientation of the GnPs resulted in multifunctional composites with improved mechanical performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39994.  相似文献   

13.
Single‐walled carbon nanotubes (SWCNT)/expanded graphite (EG)/poly(trimethylene terephthalate) (PTT) hybrid nanocomposites were prepared via in situ polymerization. Raman spectroscopy and scanning electron microscopy (SEM) were employed to determine both, purity and morphology of the nanofillers and the dispersion of nanotubes and nanosheets. The electrical and optical properties of thin polymer films based on both “single” nanocomposites and hybrid nanocomposites were studied. For PTT/SWCNT nanocomposites, results confirmed that films optical transmittance decreases as the concentration of SWCNT increases, attaining almost no optical transmittance for 0.3 wt % of nanofiller. Conversely, the electrical conductivity of nanocomposites was found to increase by increasing the nanofiller amount and the σdc values indicate that percolation occurs at a very low SWCNT content (around 0.05 wt %). In the case of PTT/SWCNT + EG nanocomposites, when the content of SWCNT is 0.05%, the hybrid system presents lower conductivity than that corresponding to the “single” nanocomposite. The incorporation of additional EG to the PTT/SWCNT nanocomposite has a small effect on the electrical conductivity but inhibits the transparency of the system. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44370.  相似文献   

14.
Because of their high‐specific stiffness, carbon‐filled epoxy composites can be used in structural components in fixed‐wing aircraft. Graphene nanoplatelets (GNPs) are short stacks of individual layers of graphite that are a newly developed, lower cost material that often increases the composite tensile modulus. In this work, researchers fabricated neat epoxy (EPON 862 with Curing Agent W) and 1–6 wt % GNP in epoxy composites. The cure cycle used for this aerospace epoxy resin was 2 h at 121°C followed by 2 h at 177°C. These materials were tested for tensile properties using typical macroscopic measurements. Nanoindentation was also used to determine modulus and creep compliance. These macroscopic results showed that the tensile modulus increased from 2.72 GPa for the neat epoxy to 3.36 GPa for 6 wt % (3.7 vol %) GNP in epoxy composite. The modulus results from nanoindentation followed this same trend. For loadings from 10 to 45 mN, the creep compliance for the neat epoxy and GNP/epoxy composites was similar. The GNP aspect ratio in the composite samples was confirmed to be similar to that of the as‐received material by using the percolation threshold measured from electrical resistivity measurements. Using this GNP aspect ratio, the two‐dimensional randomly oriented filler Halpin–Tsai model adjusted for platelet filler shape predicts the tensile modulus well for the GNP/epoxy composites. Per the authors' knowledge, mechanical properties and modeling for this GNP/epoxy system have never been reported in the open literature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
A carbon nanotube (CNT)/poly(methyl methacrylate) (PMMA)/ultrahigh molecular weight polyethylene (UHMWPE) composite containing a double‐segregated structure was formalized by means of a facile mechanical mixing technology. In the composite, the CNTs were decorated on the surfaces of PMMA granules, and the CNTs decorated granules formed the continuous segregated conducting layers at the interfaces between UHMWPE particles. Morphology observations confirmed the formation of a specific double‐segregated CNT conductive network, resulting in an ultralow percolation threshold of ~0.2 wt %. The double‐segregated composite containing only 0.8 wt % CNT loading exhibited a high electrical conductivity of ~0.2 S m?1 and efficient electromagnetic shielding effectiveness of ~19.6 dB, respectively. The thermal conductivity, temperature‐resistivity behaviors, and mechanical properties of the double‐segregated composites were also studied. This work provided a novel conductive network structure to attain a high‐performance conducting polymer composite at low filler loadings. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39789.  相似文献   

16.
Polyethylene (PE)/carbon nanochip fibers (CNCF) fibrillar crystals were grown under shear flow. The fibrillar crystals ranged from 25 to 200 nm in diameter and bundled to form PE/CNCF macro‐fibers. The PE/CNCF fibers were further processed by hot‐drawing near the PE melting temperature. On the basis of small‐angle X‐ray analysis, it was found that during drawing the presence of CNCF led to continuous extended‐chain PE crystal growth. DSC melting peaks associated with transformation of the orthorhombic to a hexagonal lattice phase in the PE crystal structure (i.e., increased ordering and extension of the polymer chain along the fiber axis) was also observed for drawn hybrid PE/CNCF fibrillar crystals. The orientation factor for the extended‐chain (i.e., shish) crystals in the hybrid as compared to the control fibers improved from 0.88 to 0.93. This work shows the direct evidence that these nanocarbon fillers can promote extended‐chain polymer crystal growth under shear. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40763.  相似文献   

17.
The structure and properties of melt mixed high‐density polyethylene/multi‐walled carbon nanotube (HDPE/MWCNT) composites processed by compression molding and blown film extrusion were investigated to assess the influence of processing route on properties. The addition of MWCNTs leads to a more elastic response during deformations that result in a more uniform thickness distribution in the blown films. Blown film composites exhibit better mechanical properties due to the enhanced orientation and disentanglement of MWCNTs. At a blow up ratio (BUR) of 3 the breaking strength and elongation in the machine direction of the film with 4 wt % MWCNTs are 239% and 1054% higher than those of compression molded (CM) samples. Resistivity of the composite films increases significantly with increasing BURs due to the destruction of conductive pathways. These pathways can be recovered partially using an appropriate annealing process. At 8 wt % MWCNTs, there is a sufficient density of nanotubes to maintain a robust network even at high BURs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42665.  相似文献   

18.
Graphite oxide (GO) produced by Hummers method was added to epoxy for strengthening purpose. Generally the E‐modulus was increased due to the GO addition; however, depending on the treatment of the GO an increase or decrease was observed for the glass transition temperature. The change in glass transition was a result of changes in the curing behavior. Addition of GO initially increased the curing speed; however, the final curing degree was lower and was dependent on the type of GO added. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43591.  相似文献   

19.
This study uses the solution mixing method to combine plasticized polyvinyl alcohol (PVA) as a matrix, and multiwalled carbon nanotubes (MWCNTs) as reinforcement to form PVA/MWCNTs films. The films are then laminated and hot pressed to create PVA/MWCNTs composites. The control group of PVA/MWCNTs composites is made by incorporating the melt compounding method. Diverse properties of PVA/MWCNTs composites are then evaluated. For the experimental group, the incorporation of MWCNTs improves the glass transition temperature (Tg), crystallization temperature, Tc), and thermal stability of the composites. In addition, the test results indicate that composites containing 1.5 wt % of MWCNTs have the maximum tensile strength of 51.1 MPa, whereas composites containing 2 wt % MWCNTs have the optimal electrical conductivity of 2.4 S/cm, and electromagnetic shielding effectiveness (EMI SE) of ?31.41 dB. This study proves that the solution mixing method outperforms the melt compounding method in terms of mechanical properties, dispersion, melting and crystallization behaviors, thermal stability, and EMI SE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43474.  相似文献   

20.
Woven glass‐fiber‐reinforced cyanate ester/epoxy composites modified with plasma‐functionalized multiwalled carbon nanotubes (MWCNTs) were prepared. The mechanical, thermal, and electrical properties of the composites were investigated at different temperatures. The results show that the interlaminar shear strength, thermal conductivity, and electrical conductivity of the composites at room temperature and the cryogenic temperatures were enhanced simultaneously by the incorporation of MWCNTs, whereas the nonconductive behavior of the composites as electrical insulating materials was not changed. Meanwhile, the reinforcing mechanism was also examined on the basis of the microstructure of the composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41418.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号