首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene, consisted of a single layer of carbon atom in a two‐dimensional lattice, has superior electrical and physical properties that promise many exciting applications. In this study, graphenes were prepared from graphite powder by chemical method and their images were investigated by TEM and SEM. To develop high performance epoxy nanocomposites with good dispersion of graphenes and strong epoxy‐graphene interfacial bonding, graphenes were amine‐functionalized and the effects of the amine‐functionalization on the curing behavior and physical properties of epoxy/graphene nanocomposites were studied. FTIR spectra confirmed the amine‐functionalization. The physical properties of the nanocomposites were investigated by DSC, DMA, TMA, and impact tester. Fracture surfaces were investigated by SEM. The physical properties of the nanocomposites could be improved considerably by the amine‐functionalization of graphenes. POLYM. ENG. SCI., 54:985–991, 2014. © 2012 Society of Plastics Engineers  相似文献   

2.
Enhancing thermal conductivity of polymeric nanocomposites remains a great challenge because of the poor compatibility between nanofillers and the polymeric matrix and the aggregation effect of nanofillers. We report the enhanced thermal conductivity of poly(lactic acid) (PLA)‐based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid. Graphite nanoplatelets (GNPs) were noncovalently functionalized with tannic acid (TA) by van der Waals forces and π–π interaction without perturbing the conjugated sp2 network, thus preserving the high thermal conductivity of GNPs. PLA‐based nanocomposites with different contents of TA‐functionalized GNPs (TA‐GNPs) were prepared and characterized, and the influences of TA‐GNPs content on the morphologies, mechanical properties, and thermal properties of the composites were investigated in detail. TA‐GNPs remarkably improved the thermal conductivity of PLA up to 0.77 W/(m K), showing its high potential as a thermally conductive filler for polymer‐based nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46397.  相似文献   

3.
Owing to its high degree of crystallinity and orientation, the surface of aramid fiber is smooth, causing its low bonding strength with polymer matrix. This has restricted the application of aramid fiber in reinforced polymer materials. Effective methods are by introducing functional groups through surface modification and by increasing its surface roughness thereby greatly improving its bonding strength with the polymer. In this work, molecular dynamics (MD) simulation study fiber functionalized with hydroxyl (OH), carboxyl (COOH), and the silane coupling agent as nanofillers for polymer nanocomposites. The interfacial characteristics and the mechanical behavior of polymer nanocomposites are investigated. The results show that the functionalization can enhance the interfacial shear stress and tensile strength. The functional group not only provides a stronger interface, but also provides additional mechanical interlocking effect, which effectively improves load-bearing transmission capacity. The analysis of the micro-mechanism from the energy level also provides new insights for the functionalized design of nanocomposites.  相似文献   

4.
The incorporation of silane treated multiwalled carbon nanotubes (S‐MWCNTs) is used as an effective path for tailoring thermomechanical properties of ethylene propylene diene monomer (EPDM). In this study, S‐MWCNTs were introduced into EPDM using internal dispersion kneader and two roller mixing mill. By altering the mass ratio of S‐MWCNTs from 0 to 1, thermal conductivity, thermal stability and phase transition temperatures and their respective enthalpies are discussed of the fabricated nanocomposites. It is observed that silane modification improves their dispersion and increases the interfacial bonding between MWCNTs and polymer matrix. Scanning electron microscopy along energy dispersive spectroscopy analysis is performed to confirm the silane functionalized MWCNTs are selectively distributed in the host polymer. More importantly, an important increase in mechanical properties like ultimate tensile strength and hardness is achieved through introducing silane functionalized MWCNTs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43221.  相似文献   

5.
Carbon nanotubes (CNTs) with reactive functional groups such as amines would affect not only properties but also curing behavior of an epoxy nanocomposite system comprising them. Therefore, in this study, an amine functionalization of multiwall CNTs (MWNTs) was carried out via treating pristine MWNTs (PMWNT) with 4‐aminobenzoic acid in polyphosphoric acid. The functionalization was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Epoxy nanocomposites comprising the PMWNT or functionalized MWNTs (FMWNT) were prepared and their curing behavior and properties were investigated. Differential scanning calorimetry (DSC) was used to obtain experimental conversion data for curing kinetic analysis. The FMWNT accelerated the curing rate of the nanocomposite system. The functionalization induced strong interfacial bonding between the epoxy matrix and the MWNTs, and resulted in considerable improvements in the properties of the nanocomposites. The SEM image showed strong interfacial bonding between the epoxy matrix and the FMWNT. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

6.
Epoxy resin nanocomposites reinforced with three different ionic liquid functionalized carbon nanotubes (f-CNTs) were fabricated by an in situpolymerization method. The influence of the anions on the curing process was studied through differential scanning calorimetry (DSC) and normalized Fourier transform infrared (FTIR) spectroscopy. The composition of the nanocomposites was analyzed by X-ray photoelectron spectroscopy. Two different mechanisms are proposed to explain the curing process of the neat epoxy and its composites. The electric conductivity and mechanical properties of the nanocomposites are also reported. The tensile strength was increased dramatically due to the insertion of f-CNTs. Scanning electron microsopy fracture surface analysis indicates a strong interfacial bonding between the carbon nanotubes and the polymer matrix.  相似文献   

7.
Multiwalled carbon nanotubes‐polymethyl methacrylate composites (MWCNT‐PMMA) were prepared by an in situ polymerization method. The effect of nanotube content and their surface functionalization on the mechanical properties of the resulting nanocomposites was investigated. The use of only 1.8 wt% functionalized tubes improved flexural modulus by about 43% and flexural strength by about 60%. In situ polymerization using functionalized tubes improved interfacial bonding strength due to a chemical interaction between carbon nanotubes and the growing PMMA, which resulted in improved load transfer mechanism. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
Carbon nanofillers like nanotubes and nanofibers have been used to reinforce various epoxy systems. The incorporation of carbon nanofillers into a thermosetting epoxy system enhanced the thermal and mechanical properties of the epoxy system. The best performance of an epoxy nanocomposite system with carbon nanofillers would be resulted from the homogeneous dispersion of the nanofillers and strong interfacial adhesion between the epoxy matrix and the nanofillers. Therefore, amine‐functionalization of carbon nanofibers (CNFs) and multiwalled carbon nanotubes (MWNTs) was carried out via treating them with 4‐aminobenzoic acid in polyphosphoric acid. FTIR spectroscopy, XPS, TGA, and FE‐SEM analyses confirmed that the functionalization was successful. Curing behavior and thermo‐physical properties of the nanocomposites comprising the pristine or functionalized carbon nanofillers were investigated and compared with each other. Fractured surfaces of the nanocomposites were investigated by FE‐SEM. The functionalized MWNTs induced stronger interfacial adhesion than the functionalized CNFs and resulted in considerable improvement in the physical properties of the epoxy nanocomposites. POLYM. COMPOS., 31:1449–1456, 2010. © 2009 Society of Plastics Engineers  相似文献   

9.
In this article, polymer composites based on polypropylene (PP) matrix reinforced with short glass fibers type E (GF‐type E) were obtained. However, to ensure good interfacial adhesion and stress transfer across the interface, the influence of the chemical functionalization of the phases was analyzed. The better interfacial adhesion is assured by the use of maleic anhydride grafted PP and amino‐functionalized GF. The obtained composite materials were tested from the point of view of composition, morphology, and mechanical properties. It can conclude that the chemical functionalization of the two phases is beneficial from the point of view of compatibility of the phases and consequently higher mechanical properties are obtained. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42163.  相似文献   

10.
Biopolyurethane nanocomposites reinforced with silane‐modified multiwalled carbon nanotubes (s‐MWCNT) were successfully prepared. The carbon nanotube surfaces were modified by means of functional amine groups via ozone oxidation followed by silanization. The surface structure of the s‐MWCNTs was characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. The s‐MWCNTs were incorporated into a vegetable oil‐based polyurethane (PU) network via covalent bonding to prepare PU nanocomposites. The effect of s‐MWCNT loading on the morphology, thermomechanical, and tensile properties of the PU nanocomposites was studied. It was determined that the s‐MWCNTs were dispersed effectively in the polymer matrix and that they improved the interfacial strength between the reinforcing nanotubes and the polymer matrix. Storage modulus, glass transition temperature, Young's modulus, and tensile strength of the nanocomposites increased with increasing s‐MWCNT loading up to 0.8%. However, increasing the s‐MWCNT content to 1.2 wt % resulted in a decrease in thermomechanical properties of the PU nanocomposites. This effect was attributed to the fact that at high s‐MWCNT contents, the increased number of amine groups competed with the polyol's hydroxyl groups for isocyanate groups, causing a decrease in the integrity of the PU matrix. High s‐MWCNT contents also facilitated aggregation of the nanotubes, causing a decrease in thermomechanical properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42515.  相似文献   

11.
An effective approach is developed to synthesize zinc dimethacrylate functionalized graphene (ZDMA‐GE) as reinforcing nanofiller for natural rubber (NR). The morphology and structure of ZDMA‐GE were characterized to confirm the exfoliation and functionalization of GE. The as‐prepared nanocomposites were investigated by transmission electron microscopy, mechanical analysis, crosslinked network analysis, and the analysis of thermal conductivity. The results demonstrated that there is strong interfacial interaction between GE and rubber matrix due to good dispersion and special two‐dimensional structure of GE. The crosslink density of the nanocomposites is greatly improved with the introduction of ZDMA‐GE because of the homopolymerization and graft polymerization of ZDMA. It is also noticed that the tensile strength, tear strength, and modulus at 300% elongation of NR nanocomposites with 15 phr ZDMA‐GE have been improved by 133, 42, and 174%, respectively. The thermal conductivity of nanocomposites with 40 phr ZDMA‐GE is enhanced 1.3 times as that of the pure NR. This remarkable improvement is attributed to the formation of covalent crosslinked network and ionic crosslinked network, good dispersion of GE, and efficient interfacial interaction between GE and NR matrix. This method provides the potential applications of functionalized GE in the polymer composites. POLYM. COMPOS., 36:1775–1785, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
This study describes the reinforcement effect of surface modified mullite fibers on the crystallization, thermal stability, and mechanical properties of polypropylene (PP). The nanocomposites were developed using polypropylene‐grafted‐maleic anhydride (PP‐g‐MA) as compatibilizer with different weight ratios (0.5, 1.0, 1.5, 2.5, 5.0, and 10.0 wt %) of amine functionalized mullite fibers (AMUF) via solution blending method. Chemical grafting of AMUF with PP‐g‐MA resulted in enhanced filler dispersion in the polymer as well as effective filler‐polymer interactions. The dispersion of nanofiller in the polymer matrix was identified using scanning electron microscopy (SEM) elemental mapping and transmission electron microscopy (TEM) analysis. AMUF increased the Young's modulus of PP in the nanocomposites up to a 5 wt % filler content, however, at 10 wt % loading, a decrease in the modulus resulted due to agglomeration of AMUF. The impact strength of PP increased simultaneously with the modulus as a function of AMUF content (up to 5 wt %). The mechanical properties of PP‐AMUF nanocomposites exhibited improved thermal performance as compared to pure PP matrix, thus, confirming the overall potential of the generated composites for a variety of structural applications. The mechanical properties of 5 wt % of AMUF filled PP nanocomposite were also compared with PP nanocomposites generated with unmodified MUF and the results confirmed superior mechanical properties on incorporation of modified filler. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43725.  相似文献   

13.
A series of polymer–clay nanocomposites consisting of polystyrene (PS) and attapuglite (ATP) were prepared successfully. First, silane coupling agent containing aromatic tertiary amine groups was synthesized to functionalize ATP (M‐ATP). Then, PS nanocomposites with varied clay loadings were prepared via in situ suspension polymerization process with a redox initiation system consisting of aromatic tertiary amine and benzoyl peroxide. The synthesis of silane coupling agent and functionalization of ATP were confirmed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectra, and X‐ray photoelectron spectroscopy. Mechanical properties, morphology, thermal stability, and rheological behavior of nanocomposites were investigated to illuminate the effects of M‐ATP on the structure and properties of nanocomposites. Field‐emission scanning electron microscope images revealed an ideal dispersion of M‐ATP and an enhanced toughness of nanocomposites. The improved interface interaction between M‐ATP and PS matrix endowed the nanocomposites with outstanding mechanical properties and thermal stability. The formation of hybrid network in the nanocomposites containing 3 wt % M‐ATP resulted in higher complex viscosity (η*), storage modulus (G′), and lower loss factor (tanδ) compared with the pristine PS and PS/ATP nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41567.  相似文献   

14.
The effects of poly(vinyl butyral) (PVB) and acid‐functionalized multiwalled carbon nanotube modification on the thermal and mechanical properties of novolac epoxy nanocomposites were investigated. The nanocomposite containing 1.5 wt % PVB and 0.1 wt % functionalized carbon nanotubes showed an increment of about 15°C in the peak degradation temperature compared to the neat novolac epoxy. The glass‐transition temperature of the novolac epoxy decreased with increasing PVB content but increased with an increase in the functionalized carbon nanotube concentration. The nanocomposites showed a lower tensile strength compared to the neat novolac epoxy; however, the elongation at break improved gradually with increasing PVB content. Maximum elongation and impact strength values of 7.4% and 17.0 kJ/m2 were achieved in the nanocomposite containing 1.5 wt % PVB and 0.25 wt % functionalized carbon nanotubes. The fractured surface morphology was examined with field emission scanning electron microscopy, and correlated with the mechanical properties. The functionalized carbon nanotubes showed preferential accumulation in the PVB phase beyond 0.25 wt % loading. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43333.  相似文献   

15.
In this study, a novel approach to toughen biobased epoxy polymer with different types of siloxanes was explored. Three different modified siloxanes, e.g., amine‐terminated polydimethyl siloxane (PDMS‐amine), glycidyl‐terminated polydimethyl siloxane (PDMS‐glycidyl), and glycidyl‐terminated polyhedral oligomeric silsesquioxane (POSS‐glycidyl) were used as toughening agents. The curing and kinetics of bioepoxy was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy. The mechanical, thermal, and morphological properties of the cured materials were investigated. Rheological characterization revealed that the inclusion of POSS‐glycidyl slightly increased the complex viscosity compared to the neat resin. The morphology of the cured bioresin was characterized by transmission electron microscopy and scanning electron microscopy. The inclusion of POSS‐glycidyl to bioepoxy resin resulted in a good homogeneity within the blends. The inclusion of PDMS‐amine or PDMS‐glycidyl was shown to have no effect on tensile and flexural properties of the bioresins, but led to a deterioration in the impact strength. However, the inclusion of POSS‐glycidyl enhanced the impact strength and elongation at break of the bioresins. Dynamic mechanical analysis showed that the siloxane modified epoxy decreased the storage modulus of the bioresins. The thermal properties, such as decomposition temperature, coefficient of linear thermal expansion, and heat deflection temperature were improved by inclusion of POSS‐glycidyl. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42451.  相似文献   

16.
The present study explores the potential use of graphene nanoplatelets (GL‐GNPs), synthesized from glucose through a new chemical approach that is facile, economical, and eco‐friendly alternative to the conventional Hummer's method, as a nanoreinforcement in polymers for the production of light‐weight structural polymer nanocomposites. Understanding the interface character of GL‐GNPs/Polyamide 12 (PA12) nanocomposites with various nanofiller loadings and how this affects their tensile behavior, are focal points of interest. Results reveal that enhancements in polymer stiffness and strength are superior at low GL‐GNPs content than higher contents. This is attributed to higher degree of GL‐GNPs exfoliation and increased polymer phase crystallinity. Interestingly, abundant small/imperfect PA12 crystallites have grown on the GL‐GNPs surface, strongly interlinking thus the polymer and graphene phases within nanocomposites. The intensity of such crystallites in interface region is the determinant of the nanocomposites' Young's modulus, assessed at small applied tensile stress. While the GL‐GNPs‐PA12 interfacial bonding is the determinant of yield and ultimate strengths, estimated at medium and high stress levels. Overall, the 1 wt% GL‐GNPs/PA12 nanocomposite is considered the optimum. Its low density and good mechanical performance among the previously developed graphene/Polyamide nanocomposites, propose promising future for GL‐GNPs‐based nanocomposites as ecofriendly and cost‐effective lightweight structural material. POLYM. ENG. SCI., 58:1201–1212, 2018. © 2017 Society of Plastics Engineers  相似文献   

17.
To improve the dispersity of multi‐walled carbon nanotubes (MWCNTs) in poly(3‐hydroxybutyrate‐co?3‐hydroxyvalerate) (PHBV) matrix, MWCNTs functionalized with carboxyl groups, hydroxyl groups, and atactic poly (3‐hydroxybutyrate) (ataPHB) through acid oxidation, esterification reaction, and “grafting from” method, respectively, were used to fabricate nanofiller/PHBV nanocomposites. The crystallization behavior, dispersion of MWCNTs before and after functionalization in PHBV matrices, and mechanical properties of a series of nanocomposites were investigated. The differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscope results suggested that the four types of MWCNTs acted as effective heterogeneous nucleation agents, inducing an increase in the crystallization rate, crystallinity, and crystallite size. Scanning electron microscope observations demonstrated that functionalized MWCNTs showed improved dispersion comparing with MWCNTs, suggesting an enhanced interfacial interaction between PHBV and functionalized MWCNTs. Consequently, the mechanical properties of the functionalized MWCNTs/PHBV nanocomposites have been improved as evident from dynamic mechanical and static tensile tests. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42136.  相似文献   

18.
Diethyltoluenediamines (DETDA) was grafted to single‐walled carbon nanotubes (SWNTs) through diazonium‐based addition for improving dispersion and interfacial bonding in SWNT/epoxy nanocomposites. Characterization results of Fourier Transformed Infrared spectroscopy and Raman spectroscopy validated covalent bonding between DETDA and carbon nanotubes. The degree of functionalization was about 4% based on thermo‐gravimetric analysis. Interfacial bonding strength was computed in the presence of chemical bonding and the computation results indicated that the interfacial shear strength in the presence of functionalized carbon nanotubes was significantly enhanced. The experimental test revealed that the tensile strength of nanocomposites was enhanced about 23% and Young's modulus about 25%, with 0.5 wt% loading of functionalized‐nanotubes. These considerable improvements further verified the load‐transfer enhancement in the functionalized‐SWNTs/epoxy nanocomposites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
Lignin was used as a biobased fill material to create epoxy composites. Lignin was incorporated into diglycidyl ether of bisphenol A–based epoxy using hydration and Mannich functionalization. The effects of chemical functionalization on the interfacial chemistry of lignin are examined, and the corresponding changes in materials properties are examined. Several types of lignin–epoxy composites were formed through dissolution of lignin in aliphatic amine. Lignin–amine solutions were modified through hydration and the Mannich reaction and were used to cure the epoxy. The resulting composites exhibited two‐phase microstructures containing lignin‐rich agglomerates. Thermomechanical properties were examined using dynamic mechanical analysis, differential scanning calorimetry, and fracture testing. Morphological and chemical changes were examined using scanning electron microscopy and Fourier transform infrared spectroscopy. The hydrated lignin samples showed similar glass transitions and mechanical properties to the neat epoxy samples. Interactions between water and the Mannich functionalized lignin decreased the glass transition temperature and mechanical properties of the highly hydrated Mannich reacted lignin samples because of a plasticization effect. Fracture testing was conducted on the samples and showed that the yield strength and elastic modulus were similar to the neat epoxy, but the fracture toughness decreased in the lignin‐containing specimen. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41263.  相似文献   

20.
In this study, the effects of functionalization and weight fraction of mutliwalled carbon nanotubes (CNTs) were investigated on mechanical and thermomechanical properties of CNT/Epoxy composite. Epoxy resin was used as matrix material with pristine‐, COOH‐, and NH2‐functionalized CNTs as reinforcements in weight fractions of 0.1, 0.5, and 1.0%. Varying (increasing) the weight fraction and changing type (pristine or functionalized) of CNTs caused increment in Young's modulus and tensile strength as observed during mechanical tests. CNT reinforcement improved thermal stability of the nanocomposites as observed by thermogravimetric analysis. Thermomechanical analysis showed a slight reduction in free volume of the polymer, that is a drop in coefficient of thermal expansion, prior to glass transition temperature (Tg) beside a slight increase in Tg value. Dynamic mechanical analysis indicated an increase in storage modulus and Tg owing to the strength addition of CNT to the matrix alongside the hardener. Scanning electron microscopy analysis of the fractured surface(s) revealed that CNTs were well dispersed with no agglomeration and resulted in reinforcing the matrix. POLYM. COMPOS., 36:1891–1898, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号