首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copolymers of linear low‐density polyethylene (LLDPE) grafted with two novel nonionic surfactants, acrylic glycerol monostearate ester (AGMS) and acrylic polyoxyethylenesorbitan monooleate ester (ATWEEN80), containing hydrophilic and hydrophobic groups and 1‐olefin double bond were prepared by using a plasticorder at 190°C. To evaluate the grafting degree, two different approaches based on 1H‐NMR data were proposed, and FTIR calibration was showed to validate these methods. The rheological response of the molten polymers, determined under dynamic shear flow at small‐amplitude oscillations, indicated that crosslinking formation of the chains could be decreased with increasing the monomer concentration. Their thermal behavior was studied by DSC and polarization microscope (PLM): The crystallization temperature (TC) of grafted LLDPE shifted to higher temperature compared with neat LLDPE because the grafted chains acted as nucleating agents. Water and glycerol were used to calculate the surface free energy of grafted LLDPE films. The results indicated that the novel polyoxyethylene surfactant ATWEEN80 could greatly improve the hydrophilicity of LLDPE and the surface free energy varied from 33 mN/m of neat LLDPE to 106 mN/m of the grafted LLDPE film. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Polyvinylpyrrolidone (PVP) grafted sulfated polysaccharide of the seaweed Cystoseira indica (CIsps) (CIspsgraft‐PVP) was synthesized in aqueous medium under microwave irradiation in the presence of potassium persulfate (KPS), as a free radical initiator. Varying the reaction parameters, e.g., concentration of PVP and KPS, reaction time and temperature, optimum grafting condition was identified as the one having the highest grafting ratio (Gr 2.30) and grafting efficiency (Ge 0.92). The grafted copolymer was characterized by FT‐IR, 13C‐NMR and thermo gravimetric analysis (TGA). The 5% (w/v) dispersion of the new material CIspsgraft‐PVP in water exhibited comparable binding properties with papers, polyethylene sheets, and wood pieces as against that of a commercial adhesive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42383.  相似文献   

3.
We modified hydrophobic poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBHV) films with hydrophilic chains to control their surface properties. We designed and investigated surface‐initiated atom transfer radical polymerization (SI‐ATRP) to modify the PHBHV films by grafting poly(2‐hydroxyethyl methacrylate) (PHEMA) from the surface. This method consisted of two steps. In the first step, amino functions were formed on the surface by aminolysis; this was followed by the immobilization of an atom transfer radical polymerization initiator, 2‐bromoisobutyryl bromide. In the second step, the PHEMA chains were grafted to the substrate by a polymerization process initiated by the surface‐bound initiator. The SI‐ATRP technique was expected to favor a polymerization process with a controlled manner. The experimental results demonstrate that the grafting density was controlled by the reaction conditions in the first step. The grafted films were analyzed by Fourier transform infrared spectroscopy, contact angle testing, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy. The results show that grafted chains under the SI‐ATRP method were preferentially located on the surface for surface grafting and in the bulk for conventional free‐radical polymerization initiated by benzoyl peroxide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Surface grafting of functional polymers is an effective method to alter material properties and degradation behavior. Two different substrate shapes of poly(l ‐lactide) (PLLA), i.e., films and microparticles, were surface‐grafted with hydrophilic monomers, and their surface degradation was monitored. Surface grafting with a hydrophilic and acidic polymer graft [acrylic acid (AA)] induced large alterations in the surface morphology and topography of the films. In contrast, hydrophilic and neutral polymer grafts [acrylamide (AAm)] had no significant effect on the surface degradation behavior, while the PLLA reference and co‐monomeric (AA/AAm) polymer‐grafted samples exhibited intermediate surface degradation rates. The grafted PAA chains induced a local acidic environment on the surface of the substrates, which in turn catalyzed the surface degradation process. This effect was more pronounced in the films than in the microparticles. Thus, the nature of the grafted chains and substrate geometry were shown to affect the surface degradation behavior of PLLA substrates. © 2015 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42736.  相似文献   

5.
1,6‐Hexanediol diacrylate (HDDA) was grafted onto polypropylene (PP) substrates in the presence of benzophenone (BP) and isopropylthioxanthone (ITX) photoinitiators, and then polyurethane acrylate formulations were coated onto the HDDA‐g‐PP substrates, using UV radiation. The amount grafted and the grafting efficiency of the polymerizations were determined gravimetrically. The effects of the photoinitiator concentration and the UV radiation intensity on the physicochemical surface properties and the grafting efficiency of the UV‐radiation grafting polymerizations were characterized in detail using contact‐angle measurements, Fourier transform infrared spectroscopy with attenuated total internal reflection, and scanning electron microscopy. The results showed that the amount grafted and the surface polarity of the HDDA‐g‐PP substrates both increased linearly with increasing BP photoinitiator concentration and UV radiation intensity, and that the addition of a small amount of ITX markedly enhanced both parameters, probably due to photosensitization. The adhesion of the UV‐cured coating onto the HDDA‐g‐PP substrates was evaluated using the crosshatch adhesion test. The results indicated that the amount of HDDA grafted onto the PP substrates should exceed about 1 mmol/cm2 for satisfactory adhesion with the UV‐cured coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1446–1461, 2006  相似文献   

6.
Noncrosslinking linear low‐density polyethylene‐grafted acrylic acid (LLDPE‐g‐AA) was prepared by melt‐reactive extrusion in our laboratory. The thermal behavior of LLDPE‐g‐AA was investigated by using differential scanning calorimetry (DSC). Compared with neat linear low‐density polyethylene (LLDPE), melting temperature (Tm) of LLDPE‐g‐AA increased a little, the crystallization temperature (Tc) increased about 4°C, and the melting enthalpy (ΔHm) decreased with an increase in acrylic acid content. Isothermal crystallization kinetics of LLDPE and LLDPE‐g‐AA samples were carried out by using DSC. The overall crystallization rate of LLDPE was smaller than that of grafted samples. It showed that the grafted acrylic acid monomer onto LLDPE acted as a nucleating agent. Crystal morphologies of LLDPE‐g‐AA and LLDPE were examined by using SEM. Spherulite sizes of LLDPE‐g‐AA samples were lower than that of LLDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2626–2630, 2002  相似文献   

7.
Ethylene–vinyl alcohol copolymer (EVOH) and linear low‐density polyethylene (LLDPE) blends with 5% LLDPE grafted with 1% maleic anhydride (MAH; EVOH/LLDPE/LLDPE‐g‐MAH), created to increase the interfacial compatibility, were coextruded with pure LLDPE through the microlayer coextrusion technology. The phase morphology and gas‐barrier properties of the alternating‐layered (EVOH/LLDPE/LLDPE‐g‐MAH)/LLDPE composites were studied by scanning electron microscopy observation and oxygen permeation coefficient measurement. The experimental results show that the EVOH/LLDPE/LLDPE‐g‐MAH and LLDPE layers were parallel to each other, and the continuity of each layer was clearly evident. This structure greatly decreased the oxygen permeability coefficient compared to the pure LLDPE and the barrier percolation threshold because of the existence of the LLDPE/EVOH/LLDPE‐g‐MAH blend layers, and the LLDPE layers diluted the concentration of EVOH in the whole composites. In addition, the effects of the layer thickness ratio of the EVOH/LLDPE/LLDPE‐g‐MAH and LLDPE layers and the layer number on the barrier properties of the layered composites were investigated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42211.  相似文献   

8.
In this article, a series of amphiphilic graft copolymers, namely poly(higher α‐olefin‐copara‐methylstyrene)‐graft‐poly(ethylene glycol), and poly(higher α‐olefin‐co‐acrylic acid)‐graft‐poly(ethylene glycol) was used as modifying agent to increase the wettability of the surface of linear low‐density polyethylene (LLDPE) film. The wettability of the surface of LLDPE film could be increased effectively by spin coating of the amphiphilic graft copolymers onto the surface of LLDPE film. The higher the content of poly(ethylene glycol) (PEG) segments, the lower the water contact angle was. The water contact angle of modified LLDPE films was reduced as low as 25°. However, the adhesion between the amphiphilic graft copolymer and LLDPE film was poor. To solve this problem, the modified LLDPE films coated by the amphiphilic graft copolymers were annealed at 110° for 12 h. During the period of annealing, heating made polymer chain move and rearrange quickly. When the film was cooled down, the alkyl group of higher α‐olefin units and LLDPE began to entangle and crystallize. Driven by crystallization, the PEG segments rearranged and enriched in the interface between the amphiphilic graft copolymer and air. By this surface modification method, the amphiphilic graft copolymer was fixed on the surface of LLDPE film. And the water contact angle was further reduced as low as 14.8°. The experimental results of this article demonstrate the potential pathway to provide an effective and durable anti‐fog LLDPE film. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The melt grafting of 10‐undecenoic acid (UA) onto a linear low‐density polyethylene (LLDPE) was studied. The grafting reaction was performed in a thermoplastic mixer and 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy) hexane was used as initiator. The concentration of UA and peroxide ranged from 1 to 4% (w/w) and 0.025 to 0.1% (w/w), respectively. Evidence of the grafting of UA as well as its extent was determined by FTIR. Experimental results showed that the amount of UA grafted increases with both the UA and initiator concentrations. However, the greatest efficiency of grafting was found at the lowest concentration of UA investigated. The grafting efficiency ranged from 8 to 40%. The dynamic linear viscoelastic properties of the original polymer and the grafted materials were evaluated at different frequencies at 160°C using a dynamic rotational rheometer. The modification process affected the melt elasticity and viscosity of the LLDPE. When the original polymer was modified only with peroxide both properties increased with respect to those of the original material. However, when UA was grafted onto LLDPE, the resulting polymers displayed values of elastic moduli and viscosity lower than those of the polymer modified with peroxide. Moreover, when a concentration of 4% of UA was used, the values of those properties were even lower than those corresponding to the original LLDPE. These observations combined with the data obtained from the GPC results suggest that scission reactions may be favored by the presence on UA. In contrast with previous observations, the thermal properties measured by DSC were only slightly altered. The fusion temperature of the modified polymers was slightly lower than that corresponding to the original polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2303–2311, 2004  相似文献   

10.
It is well known that the addition of a small amount of high‐pressure low‐density polyethylene (HP‐LDPE) to linear low‐density polyethylene (LLDPE) can improve the optical properties of LLDPE, and LLDPE/HP‐LDPE blend is widely applied to various uses in the field of film. The optical haziness of polyethylene blown films, as a result of surface irregularities, is thought to be as a consequence of the different crystallization mechanisms. However, not much effort has been directed toward understanding the effect of HP‐LDPE blending on the overall crystallization kinetics (k) of LLDPE including nucleation rate (n) and crystal lateral growth rate (v). In this study, we investigated the effect of blending 20% HP‐LDPE on the crystallization kinetics of LLDPE polymerized by Ziegler‐Natta catalyst with comonomer of 1‐butene. Furthermore, by combining depolarized light intensity measurement (DLIM) and small‐angle laser light scattering (SALLS), we have established a methodology to estimate the lateral growth rate at lower crystallization temperatures, in which direct measurement of lateral growth by polarized optical microscopy (POM) is impossible due to the formation of extremely small spherulites. This investigation revealed that HP‐LDPE blending leads to enhanced nucleation rate, reduced crystal lateral growth rate, and a slight increase in the overall crystallization kinetics of pure LLDPE. From the estimated crystal lateral growth rate, it was found that the suppression in v from HP‐LDPE blending is larger at lower temperatures than at higher temperatures. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
The wettability and crystallization behaviors of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)‐graft‐polyacrylamide (PAM) films were studied. X‐ray photoelectron spectroscopy analyses illustrated that about 62 atom % of the total polar functionalities on the grafted film with 17% grafting percentage (GP) was amide groups. Wide‐angle X‐ray diffraction results suggest that grafted PAM induced defects in PHBV crystals and influenced their crystal structure. Differential scanning calorimetry (DSC) spectra showed the two melting regions, 60–90 and 145–170°C, of the imperfect PHBV crystals of the grafted films. Grafted PAM could suppress the recrystallization of PHBV, which was consistent with the polarizing optical microscopy results, in which the maximum PHBV spherulite diameter decreased from 350 μm for the PHBV film to 50 μm for the film with 53% GP. In addition, DSC studies revealed that the crystallinity of the grafted films decreased with increasing GP, which facilitated the diffusion of water into the films. The water contact angle of grafted films decreased and the water‐swelling percentage increased as GP went up. These results demonstrate the potential of PHBV‐g‐PAM for wettable surface constructs in tissue engineering applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
The effects of linear low density polyethylene (LLDPE) grafting with vinyltrimethoxysilane by different types and contents of peroxide were studied. When grafting silane onto LLDPE, with 0.10 phr of Dicumyl peroxide (DCP) or 0.05 phr content of 2,5‐Dimethyl‐2,5‐di (tert‐butyl‐peroxy)‐hexane (DHBP), it was found that the grafting effect was improved; however, as Di(2‐tert‐butylperoxypropyl ‐(2))‐benzene (DIPP) or excess DHBP was used, LLDPE was supposed to cause self‐crosslinking, which reduced the grafting effect of silane and was invalid in the processing of extrusion. In this study, vinyl trimethoxysilane (VTMS) was grafted onto various polyethylenes (HDPE, LLDPE, and LDPE) using DCP as an initiator in a twin screw extruder. The grafted polyethylenes were able to crosslink utilizing water as the crosslinking agent. The effects of varied crosslinking time on the mechanical properties of the crosslinked polyethylenes were studied. It was found that the HDPE and LLDPE were apt to crosslink during the grafting process and thus decreased the grafting ratio. Multiple melting behavior was observed for crosslinked LDPE and LLDPE. Mechanical and thermal properties of the crosslinked PE are much better than that of uncrosslinked PE. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2383–2391, 2005  相似文献   

13.
In this study, the degradability of linear low‐density polyethylene (LLDPE) and poly(L ‐lactic acid) (PLLA) blend films under controlled composting conditions was investigated according to modified ASTM D 5338 (2003). Differential scanning calorimetry, X‐ray diffraction, and Fourier transform infrared spectroscopy were used to determine the thermal and morphological properties of the plastic films. LLDPE 80 (80 wt % LLDPE and 20 wt % PLLA) degraded faster than grafted low‐density polyethylene–maleic anhydride (M‐g‐L) 80/4 (80 wt % LLDPE, 20 wt % PLLA, and 4 phr compatibilizer) and pure LLDPE (LLDPE 100). The mechanical properties and weight changes were determined after composting. The tensile strength of LLDPE 100, LLDPE 80, and M‐g‐L 80/4 decreased by 20, 54, and 35%, respectively. The films, as a result of degradation, exhibited a decrease in their mass. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
An antifouling surface is highly desirable for many biomedical applications. In this study, poly(vinyl chloride) (PVC) films were endowed with the improved properties of resisting nonspecific protein adsorption and platelet adhesion simply through being coated with a kind of mixed‐charge zwitterionic polymer, poly(3‐sulfopropyl methacrylate–methacrylatoethyl trimethyl ammonium chloride–glycidyl methacrylate) (PSTG), with random moieties of negatively charged 3‐sulfopropyl methacrylate potassium, positively charged [2‐(methacryloyloxy)‐ethyl] trimethylammonium chloride, and glycidyl methacrylate. The PSTG‐grafted PVC films were formed by the simple immersion of an amino‐functionalized PVC film into a PSTG solution. A grafting density of 220.84 µg/cm2 of PSTG4‐grafted PVC film was successfully obtained. The PSTG4‐grafted PVC film showed a lower contact angle (37.5 °) than the ungrafted PVC film (98.3 °). The in vitro protein adsorption results show that the bovine serum albumin adsorption amount decreased 6.72 µg/cm2 in the case of the PSTG4‐grafted PVC film, whereas that on the ungrafted PVC film was 28.54 µg/cm2. So, PSTG‐grafted PVC films could be promising materials for medical devices. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44632.  相似文献   

15.
A functional polyurethane coating with ultraviolet (UV) rays converting ability of changing higher energy UV rays into lower ones was prepared from poly(conjugated azomethine‐urethane) (CAUP) reacting with hydroxyl polyacrylate resin (HPAR). As an oligomeric isocyanate, CAUP was prepared in a reaction of toluene‐2,4‐diisocyanate with N,N′‐bis(4‐hydroxyl‐3‐methoxybenzylidene)‐o, m or p‐diaminobenzene that was synthesized from vanillin and o‐phenylenediamine or m‐phenylenediamine or p‐phenylenediamine. Fourier transform infrared spectroscopy, 1H‐NMR, UV–vis, and fluorescence spectra were used to characterize those synthesized products and HPAR/CAUP films. UV‐converting abilities of HPAR/CAUP films had been demonstrated by natural exposure to ageing and the fluorescence emission spectra of HPAR/CAUP films and CAUP solutions. Red‐shift phenomena in the fluorescence emission spectra were due to molecule aggregations and stacks caused by intramolecular and intermolecular interactions such as hydrogen bonding effects. Dynamic mechanical thermal analysis and thermogravimetric analysis techniques were employed to study their mechanical and thermal properties of HPAR/CAUP films. The films exhibited excellent mechanical properties and owned high glass transition temperatures over 97.0°C, and their maximum thermal degradation temperatures were about 176.0°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Protein‐imprinted polyurethane‐grafted calcium alginate hydrogel microspheres were prepared and characterized. The samples were investigated with optical microscopy, scanning electron microscopy, 13C‐NMR, and Fourier transform infrared spectroscopy. We proved that polyurethane side chains were successfully grafted, and this led to a relatively rough and dense surface. The samples exhibited better swelling durability when applied in specific adsorption tests. The adsorption kinetic and recognition properties indicated that the imprinted modified microspheres had excellent rebinding affinity toward the target proteins. Moreover, the influence of the preassembly pH, rebinding pH, and grafting ratio on the adsorption capacity and imprinting efficiency (IE) were systematically investigated. The study results suggest that the modified samples possessed a higher IE toward the target protein under the optimum pH and grafting ratio. Upon polyurethane grafting modification, the alginate hydrogel microspheres showed improved mechanical stability and recognition specificity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42140.  相似文献   

17.
Swift‐silver‐ion irradiation was explored as a means of forming chemically active sites on the surface of biaxially oriented polypropylene films. The active species, formed in air, was used to induce the graft copolymerization of glycidyl methacrylate in an aqueous solution. The surface structure, crystallinity, morphology, and hydrophilicity of the grafted samples were characterized with Fourier transform infrared, UV, wide‐angle X‐ray diffraction, scanning electron microscopy, and contact‐angle measurements. Glycidyl methacrylate could be grafted onto biaxially oriented polypropylene after swift‐heavy‐ion irradiation without an additional initiator. The contact angle of the modified films decreased with the grafting percentage of glycidyl methacrylate on the polypropylene. The swift silver ions induced significant grafting only in small regions (i.e., the latent tracks) of the polymer. Furthermore, as the fluence of swift heavy ions increased beyond an optimum value, the overlapping of the latent tracks reduced the grafting yield. The observed findings could be very useful in developing an initiator‐free grafting system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
The chain structure, spherulite morphology, and rheological property of LLDPE‐g‐AA were studied by using electronspray mass spectroscopy, 13C–NMR, and rheometer. Experimental evidence proved that AA monomers grafted onto the LLDPE backbone formed multiunit AA branch chains. It was found that AA branch chains could hinder movement of the LLDPE main chain during crystallization. Spherulites of LLDPE became more anomalous because of the presence of AA branch chains. Rheological behavior showed that AA branch chains could act as an inner plasticizer at the temperature range of 170–200°C, which made LLDPE‐g‐AA easy to further process. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2538–2544, 2001  相似文献   

19.
Natural rubber (NR) latex films surface‐grafted with hydrophilic monomers, poly(ethylene glycol) methacrylate (PEGMA), N‐vinylpyrrolidone (VPy), and 2‐methacryloyloxyethyl phosphorylcholine (MPC), were prepared by UV‐induced graft polymerization using benzophenone as a photosensitizer. The grafting yield increases of vulcanized NR latex films as a function of time and monomer concentration were of lesser magnitude than those of the unvulcanized NR latex films. This can be explained as a result of the crosslinked network generated during vulcanization acting as a barrier to the permeation of the photosensitizer and the monomer. The appearance of a characteristic carbonyl stretching in the attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FTIR) spectra of NR latex films after the surface grafting of PEGMA and MPC indicates that the modification has proceeded at least to the sampling depth of ATR‐FTIR (∼ 1–2 μm). According to the water contact angle of the modified NR latex films, the surface grafting density became higher as the grafting time and monomer concentration increased. The complete absence of plasma protein adsorption and platelet adhesion on the surface‐modified NR latex films having grafting yield above 1 wt % is a strong indication of improved blood compatibility. Results from tensile tests suggest that graft polymerization does not cause adverse effects on the mechanical properties of vulcanized NR latex films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Polythiophene (PTH) and poly(3‐methyl thiophene) (PMT) films were electrochemically polymerized in an electrolyte solution of boron fluoride–ethyl ether. Ozone‐pretreated PTH and PMT films were subjected to UV‐light‐induced graft copolymerization with different monomers, including poly(ethylene glycol) monomethacrylate, acrylic acid, and glycidyl methacrylate. Surface grafting with the hydrophilic polymers gave rise to more hydrophilic PTH and PMT films. The structure and chemical composition of each copolymer surface were studied by X‐ray photoelectron spectroscopy. The surface grafting with the hydrophilic polymers resulted in a more hydrophilic PTH film. The dependence of the density of surface grafting and the conductivities of the grafted PTH and PMT films on the ozone pretreatment was also studied. A large amount of the grafted groups at the surface of the PTH and PMT films remained free for further surface modification and functionalization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号