首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of recycled polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) were prepared and some mechanical and morphological properties were investigated. To compatibilize these blends, ABS‐g‐(maleic anhydride) (ABS‐g‐MA) and (ethylene–vinyl acetate)‐g‐(maleic anhydride) (EVA‐g‐MA) with similar degree of grafting of 1.5% were used. To compare the effect of the type of compatibilizer on mechanical properties, blends were prepared using 3, 5 and 10 phr of each compatibilizer. A co‐rotating twin‐screw extruder was used for blending. The results showed that ABS‐g‐MA had no significant effect on the tensile strength of the blends while EVA‐g‐MA decreased the tensile strength, the maximum decrease being about 9.6% when using 10 phr of this compatibilizer. The results of notched Charpy impact strength tests showed that EVA‐g‐MA increased the impact strength of blends more than ABS‐g‐MA. The maximum value of this increase occurred when using 5 phr of each compatibilizer, it being about 54% for ABS‐g‐MA and 165% for EVA‐g‐MA. Scanning electron microscopy micrographs showed that the particle size of the dispersed phase was decreased in the continuous phase of PC by using the compatibilizers. Moreover, a blend without compatibilizer showed brittle behaviour while the blends containing compatibilizer showed ductile behaviour in fracture. © 2013 Society of Chemical Industry  相似文献   

2.
In a systematic manner, the roles of MWNTs as filler and styrene acrylonitrile copolymer‐graft‐maleic anhydride (SAN‐MA) as compatibilizer, individually and together, on dynamic‐mechanical behavior of polycarbonate (PC)‐rich/acrylonitrile butadiene styrene terpolymer (ABS) blend were studied. The investigations were performed using small‐scale mixing in a one‐step procedure with a fixed MWNTs content of 0.75 wt% and a blend composition of PC/ABS = 70/30 w/w. PC/SAN blends and nanocomposites as simpler model system for PC/ABS were also studied to reveal the role of the rubbery polybutadiene (PB) fraction. It is found that the tendency of MWNTs to localize within the PC component in compatibilized PC/ABS was lower than in compatibilized PC/SAN blends. Dynamic mechanical analysis (DMA) revealed the dual role of SAN‐MA as blend compatibilizer and also promoter of MWNTs migration towards PC, where SAN‐MA to MWNTs weight ratio varied between 1 and 4. At the compatibilizer/MWNTs weight ratio of 1, MWNTs localized in PC component of the blends whereas increasing the compatibilizer/MWNTs ratio to 4 led to migration of MWNTs toward SAN or ABS component. In DMA studies, loss modulus normalization of the nanocomposites revealed the coexistence of mobilized and immobilized regions within the nanocomposite structure, as a result of MWNTs and compatibilizer loading. POLYM. ENG. SCI., 54:2696–2706, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
In the present research, poly(acrylonitrile‐butadiene‐styrene)/polycarbonate (ABS/PC) blends were prepared in a twin screw extruder. An attempt to reinforce and promote compatibility of the above systems was made by the incorporation of organically modified montmorillonite (OMMT, Cloisite 30B), as well as by the addition of compatibilizer (ABS grafted with maleic anhydride, ABS‐g‐MAH), and the effect of those treatments on the morphology, thermal transitions, rheological, and mechanical properties of the above blends was evaluated. The addition of compatibilizer in ABS/PC blends does not significantly affect the glass transition temperature (Tg) of SAN and PC phases, whereas the incorporation of Cloisite 30B decreases slightly the Tg values of SAN and, more significantly, that of PC in compatibilized and uncompatibilized blends. The Tg of PB phase remains almost unaffected in all the examined systems. The obtained results suggest partial dissolution of the polymeric components of the blend and, therefore, a modified Fox equation was used to assess the amount of PC dissolved in the SAN phase of ABS and vice versa.Reinforcing with OMMT enhances the miscibility of ABS and PC phases in ABS/PC blends and gives the best performance in terms of tensile strength, modulus of elasticity, and storage modulus, especially in 50/50 (w/w) ABS/PC blends. The addition of ABS‐g‐MAH compatibilizer, despite the improvement of intercalation process in organoclay/ABS/PC nanocomposites, did not seem to have any substantial effect on the mechanical properties of the examined blends. POLYM. COMPOS., 35:1395–1407, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
Differential scanning calorimetry (DSC) and positron annihilation lifetime measurements have been carried out to study the effect of the compatibilizer maleic anhydride grafted ethylene propylene copolymer (EPM‐g‐MA) in poly trimethylene terephthalate and ethylene propylene diene monomer (PTT/EPDM) immiscible blends. The DSC results for the blends of 50/50 and 30/70 compositions show two clear glass transition temperatures, indicating that the blends are two‐phase systems. With the addition of compatibilizer, the separation between the two glass transitions decreased, suggesting an increased interaction between the blend components with compatibilizer. At 5 wt % of compatibilizer, the separation between the Tgs reduced in both 50/50 and 30/70 blends. The positron results for the blends without compatibilizer showed an increase in relative fractional free volume, as the EPDM content in the blend is increased. This suggests the coalescence of free volume of EPDM with the free volumes of PTT due to phase separation. However, the effect of compatibilizer in the blends was clearly seen with the observed minimum in free volume parameters at 5% of the compatibilizer, further suggesting that this percent of compatibilizer seems to be the optimum value for these blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 740–747, 2006  相似文献   

5.
Blends containing various percentages of linear low‐density polyethylene and soya powder were prepared. The effects of polyethylene‐graft‐(maleic anhydride) (PE‐g‐MA) as a compatibilizer and soya powder content on the natural weathering were investigated. Blends without PE‐g‐MA were used as controls. The soya powder was varied from 5 to 40 wt% of the blends, and PE‐g‐MA was used at 50 wt% based on soya powder content. The samples were exposed to natural weathering in the northern part of Malaysia for 1 year. Higher decreases in tensile strength and elongation at break of the controls were observed as compared to those of the PE‐g‐MA compatibilized blends after the natural weathering. The Young's modulus of both controls and compatibilized blends increased over the environmental exposure period. A control sample lost 8.8% of its original weight after 1 year of weathering, whereas a compatibilized blend lost 7.5 wt% during the same period. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
The imidization of poly(styrene‐co‐maleic anhydride) (SMA) was conducted, and the glass‐transition temperatures (Tg's) of the resulting products were measured with differential scanning calorimetry. The contributions from functional groups of maleic anhydride, N‐phenylmaleamic acid, and N‐phenylmaleimide to Tg were examined. Tg increased in the order of SMA < styrene–N‐phenyl maleimide copolymer < styrene–N‐phenyl maleamic acid copolymer and followed the Fox equation. Tg of the imidized products of SMA could be controlled by the conversions of both ring‐opening and ring‐closing reactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2418–2422, 2007  相似文献   

7.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The miscibility and crystallization behavior of poly(ethylene oxide) (PEO) and poly(styrene‐co‐maleic anhydride) ionomer (SMAI) blends were studied by the dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). This study has demonstrated that the presence of ion–dipole interactions enhances the miscibility of otherwise immiscible polymers in the PEO and high molecular weight poly(styrene‐co‐maleic anhydride) (SMA). The effect of ion–dipole interactions on enhancing miscibility is confirmed by the presence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of the PEO component. The equilibrium melting temperature of PEO in the blends are obtained using Hoffman‐Weeks plots. The interaction energy density, β, is calculated from these data using the Nishi‐Wang equation. The results suggest that PEO and SMAI blends are thermodynamically miscible in the melt. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1–7, 2000  相似文献   

9.
Blends of isotactic polypropylene (iPP) and polycarbonate (PC) with and without a compatibilizer were prepared using a Brabender Haake Rheocord at 260°C and 32 rpm. Maleic anhydride grafted styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) and maleic anhydride grafted ethylene–propylene diene (EPDM‐g‐MAH) were chosen as compatibilizers and their proportion was set to 5, 10, and 15 wt%, respectively. The thermal properties and crystallization behavior were determined by differential scanning calorimetry (DSC) and wide angle X‐ray scattering (WAXS). Micromechanical properties were also investigated using a Vickers microindentation tester. The DSC analysis indicates that the melting temperature of iPP in the all the blends, compatibilized and uncompatibilized ones, remains constant and is almost the same as those of the pure component. On the other hand, it is shown that the degree of crystallinity of iPP in the blends calculated by DSC and WAXS is dependent of the composition of the polymeric mixture. However the hardness (H) decreases with increasing PC content until the composition of iPP/PC (75/25) is reached, whereas for larger PC content values, H increases. The same trend was obtained with the addition of both compatibilizers. POLYM. ENG. SCI., 56:1138–1145, 2016. © 2016 Society of Plastics Engineers  相似文献   

10.
In attempts to improve the compatibility of polypropylene (PP) with polyethylene terephthalate (PET), a maleic anhydride grafted PP (PP‐g‐MA) was evaluated as a compatibilizer in a blend of 30/70 wt % PP/PET. PP‐g‐MA was produced from isotactic homopolymer PP utilizing the technique of solid phase graft copolymerization. Qualitative confirmations of the grafting were made by Fourier transform infrared spectroscopy (FTIR). Three different weight percent of compatibilizer, PP‐g‐MA, i.e., 5, 10, and 15 wt % have been used in PP/PET blends. The compatibilizing efficiency for PP/PET blend was examined using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM) of crycrofractured surfaces, and energy dispersive X‐ray spectrum (EDAX). The results show that the grafted PP promotes a fine dispersed phase morphology, improves processability, and modifies the crystallization behavior of the polyester component. These effects are attributed to enhance phase interaction resulting in reduced interfacial tension. Also, the results show that the compatibilizing effects of the three amounts of grafted PP in blend are different and dependent on the amount used. Adding 10 wt % of compatibilizer into blend produced the finest dispersed morphology. Elemental analysis results show that PP is matrix. DSC determination revealed that the melting temperature (Tm) of the PET component declined to some extent by comparison with neat PET. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3986–3993, 2007  相似文献   

11.
In this study, styrene maleic anhydride copolymer (SMA2000, Styrene : Maleic Anhydride 2 : 1) is grafted and/or crosslinked with epoxidized methyl oleate, epoxidized soybean oil, methyl ricinoleate (MR), castor oil (CO), and soybean oil diglyceride. Base catalyzed epoxy‐anhydride and alcohol‐anhydride polyesters were synthesized by using the anhydride on SMA, the epoxy or secondary alcohol groups on the triglyceride based monomers. The characterizations of the products were done by DMA, TGA, and IR spectroscopy. SMA‐epoxidized soy oil and SMA‐CO polymers are crosslinked rigid infusible polymers. SMA‐epoxidized soy oil and SMA‐CO showed Tg's at 70 and 66°C, respectively. Dynamic moduli of the two polymers were 11.73 and 3.34 Mpa respectively. SMA‐epoxidized methyl oleate, poly[styrene‐co‐(maleic anhydride)]‐graft‐(methyl ricinoleate), and SMA‐soy oil diglyceride polymers were soluble and thermoplastic polymers and were characterized by TGA, GPC, DSC, NMR, and IR spectroscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The effect of compatibilizers on the blending torque, crystallization behavior, intercalation level, thermal stability and morphology of EVOH/treated clay systems was investigated. Maleic anhydride‐grafted ethylene vinyl acetate (EVA‐g‐MA) or maleic anhydride‐grafted linear low density polyethylene (LLDPE‐g‐MA) were used as compatibilizers of EVOH with clay, in various concentrations (1, 5 and 10 wt%). The blends were processed using Brabender Plastograph and characterized by XRD, SEM, DSC, DMTA and TGA. X‐ray diffraction shows advanced intercalation within the galleries when the compatibilizers were added. Unique results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems, which plays a major role. Thermal analysis showed that with increasing compatibilizer content, lower crystallinity levels result, until at a certain content no crystallization has taken place. Significantly higher viscosity levels were obtained for the EVOH/clay blends compared to the neat polymer, as seen by a dramatic torque increase when processed in the Brabender machine. The DMTA spectra showed lower Tg values for the compatibilized nanocomposites compared to the neat EVOH and the uncompatibilized composites. Storage modulus was higher compared to the uncompatibilized EVOH/clay blend when EVA‐g‐MA compatibilizer was added (at all concentrations), and only at low contents of LLDPE‐g‐MA. TGA results show significant improvement of the blends thermal stability compared to the neat EVOH, and to the uncompatibilized blend, indicating an advanced intercalation.  相似文献   

14.
In this study, we report the synergistic effect of nanoclay and maleic anhydride grafted polyethylene (PE‐g‐MA) on the morphology and properties of (80/20 w/w) nylon 6/high density polyethylene (HDPE) blend. Polymer blend nanocomposites containing nanoclay with and without compatibilizer (PE‐g‐MA) were prepared by melt mixing, and their morphologies and structures were examined with scanning electron microscopy (SEM) and wide angle X‐ray diffractometer (WAXD) study. The size of phase‐separated domains decreased considerably with increasing content of nanoclay and PE‐g‐MA. WAXD study and transmission electron microscopy (TEM) revealed the presence of exfoliated clay platelets in nylon 6 matrix, as well as, at the interface of the (80/20 w/w) nylon 6/HDPE blend–clay nanocomposites. Addition of PE‐g‐MA in the blend–clay nanocomposites enhanced the exfoliation of clays in nylon 6 matrix and especially at the interface. Thus, exfoliated clay platelets in nylon 6 matrix effectively restricted the coalescence of dispersed HDPE domains while PE‐g‐MA improved the adhesion between the phases at the interface. The use of compatibilizer and nanoclay in polymer blends may lead to a high performance material which combines the advantages of compatibilized polymer blends and the merits of polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Poly(ethylene terephthalate) (PET) and polystyrene (PS) are immiscible and incompatible and have been well recognized. In this study, styrene maleic anhydride random copolymer (SMA–8 wt % MA) and tetra-glycidyl ether of diphenyl diamino methane (TGDDM) are employed as reactive dual compatibilizers in the blends of PET–PS. The epoxy functional groups of the TGDDM can react with PET terminal groups ( OH and  COOH) and anhydride groups of SMA at the interface to produce PET-co-TGDDM-co-SMA copolymers. SMA with low MA content is miscible with PS, whereas the PET segments are structurally identical with PET phase. Therefore, these in-situ-formed copolymers tend to anchor at the interface and act as effective compatibilizers of the blends. The compatibilized blends, depending on the amounts of TGDDM and SMA addition, result in smaller phase domain, higher viscosity, and improved mechanical properties. This study demonstrates that SMA and TGDDM dual compatibilizer can be utilized effectively in compatibilizing polymer blends of PET and PS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2029–2040, 1999  相似文献   

16.
The thermal behavior and morphology of multicomponent blends based on PA6, polyamide 6 (PA6)/styrene–acrylonitirle copolymer (SAN), PA6/acrylonitrile–butadiene–styrene terpolymer (ABS), and their compatibilized blends with styrene–acrylonitrile–maleic anhydride copolymer (SANMA) were studied using DSC and SEM. The blends were prepared in a twin‐screw extruder under similar processing conditions, keeping the PA6 content fixed at 50 wt %. It was found that, in all the blends, the second component had a nucleating effect and improved the overall degree and rate of crystallization of PA6, whereas addition of a compatibilizer slightly diminished these effects and resulted in significant changes in the blend morphology. The nucleating effect and consequent changes in the crystallization behavior was attributed to the presence of SAN, which is a common component in all the blends. The Tg of PA6 in the blends with a cocontinuous morphology, due to the connectivity between the phases, is higher than in the blends with a disperse‐type morphology. The compatibilized blends have a lower crystallization rate and nucleation ability with a cocontinuous morphology, whereas the uncompatibilized blends have a higher crystallization rate with a higher nucleation ability and a disperse and/or a coarse cocontinuous morphology. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2753–2759, 2002  相似文献   

17.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

18.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013  相似文献   

20.
Blends consisting of high‐impact polystyrene (HIPS) as the matrix and polyamide 1010 (PA1010) as the dispersed phase were prepared by mixing. The grafting copolymers of HIPS and maleic anhydride (MA), the compatibilizer precursors of the blends, were synthesized. The contents of the MA in the grafting copolymers are 4.7 wt % and 1.6 wt %, and were assigned as HAM and LMA, respectively. Different blend morphologies were observed by scanning electron microscopy (SEM); the domain size of the PA1010 dispersed phase in the HIPS matrix of compatibilized blends decreased comparing with that of uncompatibilized blends. For the blend with 25 wt % HIPS‐g‐MA component, the Tc of PA1010 shifts towards lower temperature, from 178 to 83°C. It is found that HIPS‐g‐MA used as the third component has profound effect on the mechanical properties of the resulting blends. This behavior has been attributed to the chemical reaction taking place in situ during the mixing between the two components of PA1010 and HIPS‐g‐MA. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 799–806, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号