首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two types of vinyl silicone oil (VSO), allyl‐capped hyperbranched polycarbosilane (HBP), and triethoxysilane (TES) were employed to synthesize macromolecular silane coupling agent (MMSCA) by hydrosilylation. VSOs, HBP, and the hydrosilylated products were used as crosslinker, respectively, to improve weak mechanical properties of silicone rubber (SR). Structures of the crosslinkers were studied by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR). Crosslinking density test and scanning electron microscope (SEM) observation showed an increased interaction between silicone rubber and fumed silica by the use of MMSCA. Mechanical properties of the resulted composites using MMSCAs were increased to varying degrees compared with those possessing crosslinkers without ethoxy group. MMSCAs were effective for further property enhancements of composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43415.  相似文献   

2.
The ablative performance of aluminum silicate ceramic fiber (ASF) and calcium carbonate (CaCO3) filled silicone rubber composites prepared through a two‐roll mill was examined. The properties of the composites were investigated by thermogravimetry, thermal conductivity measurements, and oxyacetylene torch testing. After the material was burnt, the structure and composition of the char were analyzed by Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy (SEM). The results of the ablation test showed that the ablation resistance improved greatly in an appropriate filler scope. Combined with SEM, it was proven that a firm, dense, and thermal insulation layer, which formed on the composites surface during the oxyacetylene torch test, was a critical factor in determining the ablation properties. Thermogravimetric analysis revealed that the thermal stability of the composites was enhanced by the incorporation of ASF and CaCO3. The thermal conductivity measurements showed that the silicone rubber composites had a very low thermal conductivity ranging from 0.206 to 0.442 W m?1 K?1; this significantly prevented heat from transferring into the inner matrix at the beginning of the burning process. The proportion of 20/40 phr (ASF/CaCO3) was optimum for improving the ablation resistance of the silicone rubber composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41619.  相似文献   

3.
Hollow microspheres (HM) of ceramic, silica, and glass‐filled silicone rubber (SR) composites were prepared, and the effects of hybrid HM on thermal and mechanical properties of composites were investigated. The results indicate that hybrid HM can effectively improve the thermal insulation property of HM/SR composites. Especially, for sample 15S, the thermal conductivity and thermal degradation temperature reached 0.1273 W/m K and 521 °C (45 °C higher than that of neat SR), respectively. Besides, thermal insulation performance was improved, showing as a temperature of 103.2 °C after 15 min heating, which is 37.8 °C lower than that of SR. The tensile strength of composites was enhanced from 1.92 MPa at 11.56 vol % hollow silica microspheres (HSM) loading to 3.08 MPa at 21.88 vol % HSM loading. Moreover, the compressive strength was improved from 3.33 to 5.68 MPa by introducing more hollow ceramic microspheres into the matrix, in this case, from 7.79 to 15.33 vol %. Furthermore, the failure mechanism was analyzed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46025.  相似文献   

4.
To improve the thermal and mechanical properties of liquid silicone rubber (LSR) for application, the graphene oxide (GO) was proposed to reinforce the LSR. The GO was functionalized with triethoxyvinylsilane (TEVS) by dehydration reaction to improve the dispersion and compatibility in the matrix. The structure of the functionalized graphene oxide (TEVS‐GO) was evaluated by Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD), and energy dispersive X‐ray spectroscopy (EDX). It was found that the TEVS was successfully grafted on the surface of GO. The TEVS‐GO/LSR composites were prepared via in situ polymerization. The structure of the composites was verified by FTIR, XRD, and scanning electron microscopy (SEM). The thermal properties of the composites were characterized by TGA and thermal conductivity. The results showed that the 10% weight loss temperature (T10) increased 16.0°C with only 0.3 wt % addition of TEVS‐GO and the thermal conductivity possessed a two‐fold increase, compared to the pure LSR. Furthermore, the mechanical properties were studied and results revealed that the TEVS‐GO/LSR composites with 0.3 wt % TEVS‐GO displayed a 2.3‐fold increase in tensile strength, a 2.79‐fold enhancement in tear strength, and a 1.97‐fold reinforcement in shear strength compared with the neat LSR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42582.  相似文献   

5.
Thermal stability and ablation properties of silicone rubber composites   总被引:1,自引:0,他引:1  
Effects of incorporation of clay and carbon fiber (CF) into a high temperature vulcanized (HTV) silicone rubber, i.e., poly(dimethylsiloxane) (PDMS) containing vinyl groups, on its thermal stability and ablation properties were explored through thermogravimetric analyses (TGA) and oxy‐acetylene torch tests. Natural clay, sodium montmorillonite (MMT), was modified with a silane compound bearing tetra sulfide (TS) groups to prepare MMTS4: the TS groups may react with the vinyl groups of HTV and enhance the interfacial interaction between the clay and HTV. MMTS4 layers were better dispersed than MMT layers in the respective composites with exfoliated/intercalated coexisting morphology. According to TGA results and to the insulation index, the HTV/MMTS4 composite was more thermally stable than HTV/MMT. However, addition of CF to the composites lowered their thermal stability, because of the high thermal conductivity of CF. The time elapsed for the composite specimen, loaded with a constant weight, to break off after the oxy‐acetylene flame bursts onto the surface of the specimen was employed as an index for an integrated assessment of the ablation properties, simultaneously taking into consideration the mechanical strength of the char and the rate of decomposition. The elapsed time increased in the order of: HTV < HTV/CF ≈ HTV/MMTS4 < HTV/CF/MMTS4 ≈ HTV/MMT < HTV/CF/MMT. This order was different from the increasing order of the thermal stability determined by TGA results and the insulation index. The decreased degree of crosslinking of the composites with MMTS4 compared with that of the composite with MMT may be unfavorable for the formation of a mechanically strong char and could lead to early rupture of the HTV/MMTS4 specimen. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The ablative properties of epoxy modified silicone rubber composites filled with zinc borate (ZB) and aluminum hypophosphite (AHP) were studied. The decomposition of the added fillers and covering connection of residual on the substrate contribute to the improvement of heat insulation. The ablation test shows that the formation of a dense char layer with certain strength is key to improving the ablative properties. The optimal ablative performance is achieved when the concentration of ZB and AHP is 10 and 5 phr, respectively. Under such circumstances, the linear ablation rate is as low as 0.032 mm/s, which is about 61% lower than the pure silicone rubber. Furthermore, the structure and composition of the formed char layer were analyzed using X-ray diffraction analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy.  相似文献   

7.
This study presents an investigation of the electrical and thermal conductivities of composites based on an ethylene vinyl acetate (EVA) copolymer matrix and nanostructured expanded graphite (EG). To improve the EG dispersion in EVA, EG sheets were modified by treating them with the anionic surfactant sodium dodecyl sulphate (SDS) in water. The modified SDS‐EG platelets, after being filtered and dried, were melt‐mixed with EVA to prepare the composites. Finally, both EVA/EG and EVA/SDS‐EG composites were subjected to 50 kGy electron beam (EB) irradiation. SEM images confirm that the irradiated EVA/EG samples had improved interfacial adhesion, while the irradiated EVA/SDS‐EG samples showed even better interfacial adhesion. The gel contents of the irradiated samples without and with SDS treatment increased with increase in EG loading. The EVA/EG composites exhibited a sharp transition from an insulator to a conductor at an electrical percolation threshold of 8 wt %, but with SDS‐EG the electrical conductivity was extremely low, showing no percolation up to 10 wt % of filler. The EB irradiation had no influence on electrical conductivity. The thermal conductivity linearly increased with EG content, and this increase was more pronounced in the case of SDS‐EG, but decreased after EB irradiation. The thermal properties were little influenced by EB irradiation, while better polymer–filler interaction and better filler dispersion as a result of SDS treatment, and the EB irradiation initiated formation of a cross‐linked network, had a positive effect on the tensile properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42396.  相似文献   

8.
Pressure/temperature sensitive silicon rubber (SR) filled with carbon black (CB) was prepared by a liquid mixing method. The transfer function of a pressure/temperature sensor based on CB/SR was derived by general effective media theory. The results show that the transfer functions coincided well with the experimental data, and the negative pressure coefficient of the resistance/positive temperature coefficient of resistance are shown. The working principles of these two kinds of sensors are different. The working principle of the pressure sensor based on CB/SR was related to the volume fraction of CB. With increasing volume fraction of CB, the working principle of this kind of pressure sensor varied from a piezo‐resistive effect to a strain effect. In addition, the working principle of the temperature sensor based on CB/SR was that the resistivity changed with temperature; this was not related to the volume fraction of CB. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42979.  相似文献   

9.
In this work, low density hollow glass beads (HGB)/silicon rubber (SR) composites were prepared by solution method and flocculation process. The prepared samples were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, tensile test, and friction test. The results show that the densities of SR composites decrease from 1.140 to 0.792 g/cm3 with the addition of HGB. By comparing theoretical density with true density, it can be estimated that the ratio of shattered HGB increase from 8.79% to 24.76%. Especially, the mechanical properties of SR composites were improved by surface modification of HGB. By adding surface-modified HGB at 5 and 10 wt%, the tensile strengths of SR composites were enhanced by 17.8% and 28.2%, respectively. In addition, tear strength, shore A hardness, compression set, and friction property were significantly ameliorated. Furthermore, the mechanism of surface-modified HGB in mechanical properties was analyzed.  相似文献   

10.
The article describes the effect of structure of vinyl ester resins (VE) on the mechanical properties of neat sheets as well as glass fabric‐reinforced composites. Different samples of VE were prepared by reacting ester of hexahydrophthalic anhydride (ER) and methacrylic acid (MAA) (1 : 1 molar ratio) followed by reaction of monomethacrylate terminated epoxy resin with glutaric (E) or adipic (F) or sebacic acid (G) (2 : 1 molar ratio). The neat VE were diluted with styrene and sheets were fabricated by using a glass mold. A significant reduction in the mechanical properties was observed by increasing the methylene content of resin backbone (i.e., sample E to G). Glass fabric‐reinforced composites were fabricated by vacuum assisted resin transfer molding (VARTM) technique. Resin content in the laminates was 50 ± 5 wt %. Increase in the number of methylene groups in the vinyl ester resin (i.e., increasing the bridge length) did not show any significant effect on limiting oxygen index (LOI) value (21 ± 1) of the laminates but tensile strength, tensile modulus, flexural strength, and flexural modulus all increased though these values are significantly lower than observed in laminates based on resin B. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
To develop an efficient, simple, and biocompatible method for improving the thermal and mechanical properties of an addition‐type liquid silicone rubber (LSR), octavinyl‐polyhedral oligosilsesquioxane (OPOSS) modified LSR samples were prepared through the addition of 0.5–4.0 wt % OPOSS as a modifier to a platinum‐based silicone curing system before vulcanization. The characterization and measurement of the OPOSS and LSR samples were carried out by Fourier transform infrared spectroscopy, X‐ray diffraction, NMR, gas chromatography/mass spectrometry (electron impact ionization), scanning electron microscopy, thermogravimetric analysis/differential scanning calorimetry, and universal testing. The experimental results show that the crosslinking of the OPOSS and LSR polymer had a significantly positive effect on the thermal and mechanical properties. Compared with the unmodified sample, its tensile strength was enhanced by 423–508%, its tear resistance was increased from 22 to 44%, the residue at 600 °C was increased by 36–75% in an N2 atmosphere and 8–65% in an air atmosphere, respectively. These results were obviously superior to those from other similar reported methods that used larger molecular or nonreactive polyhedral oligosilsesquioxane (POSS) derivatives as modifiers at similar POSS loadings. Furthermore, a significant correlation was found between the loading rate of OPOSS and the thermal properties. However, the mechanical properties seemed negatively correlated with the OPOSS content within the experimental range; this may have been due to a material defect caused by the uneven distribution and agglomeration. The results of this study proved that the incorporation of OPOSS into an LSR polymer matrix by a hydrosilylation reaction could be an efficient way to improve the mechanical properties, thermal stability, and biocompatibility of LSR in the future. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43906.  相似文献   

12.
In this study, the main focus was on the effect of wood fiber (WF) content and particle size on the morphology and mechanical, thermal, and water‐absorption properties of uncompatibilized and ethylene glycidyl methacrylate copolymer (EGMA) compatibilized ethylene vinyl acetate copolymer–WF composites. For uncompatibilized composites, the tensile strength decreased with increasing WF content, whereas for compatibilized composites, the tensile strength initially decreased, but it increased for composites containing more than 5% WF. Small‐WF‐particle‐containing composites had higher tensile strengths than composites containing larger WF particles, both in the presence and absence of EGMA. WF particle size did not seem to have much influence on the degradation behavior of the composites, whereas water absorption by the composites seemed to be higher in composites with smaller particle sizes for both compatibilized and uncompatibilized composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3645–3654, 2007  相似文献   

13.
Tensile yield behavior of the blends of polypropylene (PP) with ethylene‐propylene‐diene rubber (EPDM) is studied in blend composition range 0–40 wt % EPDM rubber. These blends were prepared in a laboratory internal mixer by simultaneous blending and dynamic vulcanization. Vulcanization was performed with dimethylol phenolic resin. For comparison, unvulcanized PP/EPDM blends were also prepared. In comparison to the unvulcanized blends, dynamically vulcanized blends showed higher yield stress and modulus. The increase of interfacial adhesion caused by production of three‐dimensional network is considered to be the most important factor in the improvement. It permits the interaction of the stress concentrate zone developed at the rubber particles and causes shear yielding of the PP matrix. Systematic changes with varying blend composition were found in stress‐strain behavior in the yield region, viz., in yield stress, yield strain, width of yield peak, and work of yield. Analysis of yield stress data on the basis of the various expressions of first power and two‐thirds power laws of blend compositions dependence and the porosity model led to consistent results from all expression about the variation of stress concentration effect in both unvulcanized and vulcanized blend systems. Shapes and sizes of dispersed rubber phase (EPDM) domains at various blend compositions were studied by scanning electron microscopy. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2104–2121, 2000  相似文献   

14.
The thermal stability and ablation properties of silicone rubber filled with silica (SiO2), aluminum silicate ceramic fiber (ASF), and acicular wollastonite (AW) were studied in this article. The morphology, composition, and ablation properties of the composite were analyzed after oxyacetylene torch tests. There were three different ceramic layers found in the ablated composite. In the porous ceramic layer, the rubber was decomposed, producing trimers, tetramers, and SiO2. ASF and part of AW still remained and formed a dense layer. The SiO2/SiC filaments in the ceramic layer reduced the permeability of oxygen, improving the ablation properties of the composites. The resultant ceramic layer was the densest, which acted as effective oxygen and heat barriers, and the achieved line ablation rate of the silicone composite were optimum at the proportion of 20 phr/40 phr (ASF/AW). Thermogravimetric analysis (TGA) confirmed that thermal stability of the composites was enhanced by the incorporation of ASF and AW. The formation of the ceramic layer was considered to be responsible for the enhancement of thermal stability and ablation properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39700.  相似文献   

15.
A series of bisphenol A (BPA)‐based 2,2‐bis‐[4‐(3,4‐dicyanophenoxy)phenyl]propane (BAPh) prepolymers and polymers were prepared using BPA as a novel curing agent. Ultraviolet–visible and Fourier transform infrared spectroscopy spectrum were used to study the polymerization reaction mechanism of the BAPh/BPA polymers. The curing behaviors were studied by differential scanning calorimetry and dynamic rheological analysis, the results indicated that the BAPh/BPA prepolymers exhibit large processing windows (109.5–148.5°C) and low complex viscosity (0.1–1 Pa·s) at moderate temperature, respectively. Additionally, the BAPh/BPA/glass fiber (GF) composite laminates were manufactured and investigated. The flexural strength and modulus of the composite laminates are 548.7–632.8 MPa and 25.7–33.2 GPa, respectively. The thermal stabilities of BAPh/BPA/GF composite laminates were studied by thermogravimetry analysis. The temperatures at 5% weight loss (T5%) of the composite laminates are 508.5–528.7°C in nitrogen and 508.1–543.2°C in air. In conclusion, the BAPh/BPA systems can be used as superior matrix materials for numerous advanced composite applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Basalt fabric (BF) was first treated with silane coupling agent KH550, modified basalt fabric (MBF) was obtained. Then MBF were molded with polypropylene (PP) matrix, and polypropylene/modified basalt fabrics (PP/MBF) composites were obtained. The influence of concentration and treating time of KH550 on MBF were characterized by hydrophilicity and lipophilicity. The tensile strength and morphology of basalt fabric were tested by single filament strength tester and scanning electron microscopy. The mechanical properties of composites were measured with electronic universal testing machine and impact testing machine, and the thermal properties were tested by thermogravimetric analysis and dynamic mechanical analysis. The results showed that the lipophilicity of MBF is improved significantly by KH550 while the tensile is nearly damaged. The mechanical properties of composites are larger than that of pure PP, among which the impact property was improved the most, showing 194.12% enhancement. The thermal stability and dynamic viscoelasticity were better than pure PP; furthermore, the concentration of KH550 virtually had no effect on the thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42504.  相似文献   

17.
以硅烷偶联剂KH 570改性凹凸棒土(AT),制备了甲基乙烯基硅橡胶(MVQ)/AT复合材料,考察了紫外辐射对MVQ/AT复合材料物理机械性能及热性能的影响,并通过扫描电子显微镜表征了复合材料的微观形貌。结果表明,随着辐照时间的延长,MVQ/AT复合材料的邵尔A硬度和拉伸强度先增大后减小,扯断伸长率先减小后增加,热稳定性先提高后下降;MVQ/AT复合材料经紫外辐照后,表面颜色加深并出现裂纹,随着辐照时间的延长,裂纹数量逐渐增加,表面变得粗糙,并且有部分填料暴露在材料表面。  相似文献   

18.
In this work, an efficient preparation method for flame retardant silicon rubbers (FRSR) was established with using melamine cyanurate (MCA) as flame retardants. In order to analyze the thermal aging mechanisms and flame retardancy of FRSR, cone calorimetric test (CCT), Fourier transform infrared (FTIR) spectra, scanning electronic microscopy (SEM), and energy dispersive X-ray spectra were performed. Results indicated that the aging time significantly decreases the tensile strength and the elongation at break. SEM images revealed that the porous surface of the aged FRSR provide diffusion path for heat and oxygen, which resulted in a continuously increase in Shore A hardness due to the increase of cross-linking density during the aging process. FTIR spectra further proved that the MCA is well-embedded into samples and cross-linking reaction between free radicals of silicone rubber (SR) and oxygen was occurring during the aging process. Besides, CCT results showed that all FRSR samples before and after thermal aging exhibit excellent flame retardancy with compact and stable char residue layers, effectively hindering the heat transfer and oxygen diffusion. It was expected that our findings could provide important information to fabricate SR with flame retardancy and outstanding long-term thermal-aging resistance.  相似文献   

19.
Three different types of nanosized carbon black (CB), Printex XE2 (CBP), Vulcan XC72, and Printex 140 U (CBU), were dispersed by mechanical mixing in rubbery epoxy (RE) and silicone to produce composites. It was found that the maximum possible loading of CB in the polymers depended on the surface area of CB. For a given loading, all three CBs produced similar improvements in the thermal conductivity of the resulting composites, but their effects on the electrical conductivity varied and ranged from insulating composites with CBU to conducting composites with CBP. CBP produced a greater improvement in the electrical conductivity than the thermal conductivity of the polymers compared to the other CBs. This was attributed to the high structure of CBP, which led to the formation of a concatenated structure within the matrix. The CB/silicone composites had a similar thermal conductivity to that of the CB/RE composites, but only the CBP/silicone composite produced at 8 wt % loading was electrically conducting. The compression and hardness properties of RE were also significantly improved with the addition of CB. However, in the case of silicone, only CBP had a considerable effect on the compression properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
The effect of ethylene–propylene–diene terpolymer (EPDM), dicumyl peroxide (DCP), and dimethyl silicone oil on the mechanical properties of high‐density polyethylene (HDPE) composites filled with 60 mesh cryogenically scrap rubber powder (SRP) was studied. The addition of 10 wt % EPDM, 0.2 wt % DCP, and 4 wt % dimethyl silicone oil significantly increased both the impact strength and elongation at break of the HDPE/SRP composites. After the modification, the impact strength increased by 160%, and the elongation at break increased by 150% for the composites containing 40 wt % SRP. The impact load–time curves showed that the increase of impact energy for the modified composites was attributed to the increase of the maximum force at yield point and the ductile deformation after yielding. The rheological behavior, dynamic mechanical properties, and morphology observation suggested that an enhanced adhesion between SRP and polymer matrix formed in the modified HDPE/SRP composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2020–2027, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号