首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new electrochoromic polymer poly(8,11‐bis(3,4‐ethylenedioxy thiophen‐2‐yl)acenaphtho[1,2‐b]‐quinoxaline) (PBEAQ) was synthesized by electrochemical polymerization of the corresponding monomer (BEAQ) in a 0.1 M tetraethylammonium tetrafluoroborate (TEABF4) dichloromethane–acetonitrile (2 : 1, v : v) solution. The monomer and polymer were characterized by elemental analysis, 1H‐NMR, IR, and UV‐vis spectroscopy. The electrochemical and optical properties of polymer were investigated by cyclic voltammetry and UV‐vis spectroscopy. Cyclic voltammetry and spectroelectrochemistry studies demonstrated that the polymer can be reversibly reduced and oxidized (both n‐ and p‐doped) between ?2 V and +1.5 V vs. Ag/Ag+. The polymer had a transmissive light blue color in the oxidized state and reddish color in the reduced state. Undoped polymer shows UV‐vis absorption peaks at 615 nm in solution, 650 nm in solid state, and has an optical band gap of 1.5 eV. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (P(VDF‐HFP)) based composite polymer electrolyte (CPE) membranes were successfully prepared by electrospinning followed by electrophoretic deposition processes, and desirable polymer electrolytes were obtained after being activated in liquid electrolytes. The physicochemical properties of the CPEs with different electrophoretically deposited nano‐SiO2 contents were investigated by SEM, XRD, TGA, linear sweep voltammetry and electrochemical impedance spectroscopy measurements. When the ratio of electrophoretically deposited nano‐SiO2 to P(VDF‐HFP) is up to 4 wt%, the results show that the CPE membrane presents a very uniform surface with abundant interconnected micropores and possesses excellent mechanical tensile strength with high thermal and electrochemical stability; the ionic conductivity at room temperature can reach 3.361 mS cm?1 and the reciprocal temperature dependence of the ionic conductivity follows a Vogel ? Tamman ? Fulcher relationship. The interfacial resistance of the assembled Li/CPE/Li simulated cell can rapidly increase to a steady value of about 950 Ω from the initial value of about 700 Ω at 30 °C during 15 days' storage. The battery performance test suggests that the CPE also shows excellent compatible properties with commercial LiCoO2 and graphite materials. © 2015 Society of Chemical Industry  相似文献   

3.
Copolyesters of 8‐(3‐hydroxyphenyl)octanoic acid (HPOA), a monomer with kink and flexible segment derived from cardanol, and 4‐hydroxybenzoic acid (HBA) or its brominated derivative, 3‐bromo‐4‐hydroxybenzoic acid (BrHBA), were synthesized by acidolysis melt polycondensation of the in situ generated acetoxyderivative in the presence of magnesium acetate as catalyst by a one‐pot method and characterized. The formation of the copolyester was confirmed by elemental analysis, FTIR and 1H NMR spectroscopy. These polymers were highly insoluble in most solvents except highly polar solvents, such as trifluoroacetic acid. The inherent viscosities of the soluble polymers were in the range of 0.8–1.1 dlg?1. The thermal and phase behaviour of the copolyesters were studied by DSC and polarized light microscopy. Poly{(4‐oxybenzoate)‐co‐[8‐(3‐oxyphenyl)octanoate]} with 50 mole% of HPOA showed a birefringent melt with opalescence and a worm‐like texture of a nematic phase. The effect of bromine substitution in the analogue poly{(3‐bromo‐4‐oxybenzoate)‐co‐[8‐(3‐oxyphenyl)octanoate]} was evident when it showed a lower transition with minimum 45% Br‐HBA at 225 °C showing enhanced melt processability. These copolymers, with hydrolytically degradable aliphatic carbonyl group and better crystallinity compared to poly(hydroxyalkanoate)s, are interesting in possible biomedical applications. © 2002 Society of Chemical Industry  相似文献   

4.
Poly(aniline‐co‐o‐aminophenol) (PANOA) was synthesized via electrochemical copolymerization of o‐aminophenol and aniline using p‐toluene sulfonate (TSA?) as the counterion. The redox transformation of PANOA is accompanied by the exchange of anions into and out of the copolymer, and the feasibility of perchlorate (ClO4?) removal via an electrically switched ion exchange process was evaluated in this study. The results of electrochemical quartz crystal microbalance (EQCM), electrochemical impedance spectroscopy (EIS), and Fourier transform infrared spectroscopy (FTIR) demonstrated the successful release of TSA? upon reduction and uptake of ClO4? upon reoxidation of the copolymer. Also, in this work, the possible ion‐exchange mechanism of PANOA was proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41895.  相似文献   

5.
Three series of liquid‐crystalline‐cum‐photocrosslinkable polymers were synthesized from 4‐x‐phenyl‐4′‐(m‐methacryloyloxyalkyloxy)cinnamates (x = ? H, ? OCH3 and ? CN; m = 6, 8 and 10) by free radical solution polymerization using azobisisobutyronitrile as an initiator in tetrahydrofuran at 60 °C. All the monomers and polymers were characterized using intrinsic viscosity, and FTIR, 1H NMR and 13C NMR spectroscopy. The liquid crystalline behavior of these polymers was examined using a hot stage optical polarizing microscope. All the polymers exhibited liquid crystalline behavior. The hexamethylene spacer‐containing polymers exhibited grainy textures; in contrast, the octamethylene and decamethylene spacer‐containing polymers showed nematic textures. Differential scanning calorimetry data confirmed the liquid crystalline property of the polymers. Thermogravimetric analysis revealed that all the polymers were stable between 236 and 344 °C in nitrogen atmosphere and underwent degradation thereafter. As the methylene chain length increases in the polymer side‐chain, the thermal stability and char yield of the polymers decrease. The photocrosslinking property of the polymers was investigated using the technique of exposing the polymer solution to UV light and using UV spectroscopy. The crosslinking reaction proceeds via 2π–2π cycloaddition reactions of the ? CH?CH? of the pendant cinnamate ester. The polymers containing electron‐releasing substituents (? OCH3) showed faster crosslinking than the unsubstituted polymers and those containing electron‐withdrawing substituents (? CN). Copyright © 2007 Society of Chemical Industry  相似文献   

6.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

7.
A post‐polymerization method for metal–organic frameworks (MOFs) has been developed to produce super‐acidic solid nanoparticles. Thus, the NH2MIL‐53(Al) MOF was functionalized with (3‐aminopropyl)triethoxysilane (APTES) from amine groups to yield active site anchored MOF nanoparticles. Then, sulfonated polymer/MOF hybrid nanoparticles were prepared by redox polymerization of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (MOF‐g‐PAMPS), initiated onto the surfaces of aminopropyl‐functionalized NH2MIL‐53(Al) nanoparticles. The synthesis and modification of NH2MIL‐53(Al) nanoparticles were characterized by Fourier transform infrared (FTIR) spectroscopy and TGA. FTIR and TGA results indicated that APTES modifier agent and AMPS monomer were successfully grafted onto the MOF nanoparticles. The grafting efficiency of PAMPS polymer onto the MOF nanoparticles was estimated from TGA thermograms to be 33%. Also, sulfonated polymer/MOF hybrid nanoparticles showed a proton conductivity as high as 4.9 × 10?5 S cm?1. Nitrogen adsorption of modified NH2MIL‐53(Al) showed also a decrease in pore volume. The morphology and crystalline structure of MOF nanoparticles before and after the modification processes were studied by SEM and XRD, respectively. © 2015 Society of Chemical Industry  相似文献   

8.
A new polyphenol (poly‐2‐[(4‐methylbenzylidene)amino]phenol) (P(2‐MBAP)) containing an azomethine group was synthesized by oxidative polycondensation reaction of 2‐[(4‐methylbenzylidene)amino]phenol (2‐MBAP) with NaOCl, H2O2, and O2 oxidants in an aqueous alkaline medium. The structures of 2‐MBAP and P(2‐MBAP) were characterized by UV‐vis, FT‐IR, and 1H NMR spectra. While the monomer decomposed completely up to 350°C and 57.2% of the polymer decomposed up to 1000°C. The thermal degradation of P(2‐MBAP) was also supported by the Thermo‐IR spectra recorded in the temperature range of 25–800°C. Electrical conductivity of the polymer was observed to increase 108 fold after doping with I2. Antimicrobial activities of the P(2‐MBAP) and 2‐MBAP against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus feacalis, Klebsiella pneumoniae, Bacillus subtilis, Candida albicans, and Saccharomyces cerevisiae were also investigated. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) of the polymers were determined by gel permeation chromatography (GPC). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41758.  相似文献   

9.
This study synthesizes thermally sensitive block copolymers poly(N‐isopropylacrylamide)‐b‐poly(4‐methyl‐ε‐caprolactone) (PNIPA‐b‐PMCL) and poly(N‐isopropylacrylamide)‐b‐poly(4‐phenyl‐ε‐caprolactone) (PNIPA‐b‐PBCL) by ring‐opening polymerization of 4‐methyl‐ε‐caprolactone (MCL) or 4‐phenyl‐ε‐caprolactone (BCL) initiated from hydroxy‐terminated poly(N‐isopropylacrylamide) (PNIPA) as the macroinitiator in the presence of SnOct2 as the catalyst. This research prepares a PNIPA bearing a single terminal hydroxyl group by telomerization using 2‐hydroxyethanethiol (ME) as a chain‐transfer agent. These copolymers are characterized by differential scanning calorimetry (DSC), 1H‐NMR, FTIR, and gel permeation chromatography (GPC). The thermal properties (Tg) of diblock copolymers depend on polymer compositions. Incorporating larger amount of MCL or BCL into the macromolecular backbone decreases Tg. Their solutions show transparent below a lower critical solution temperature (LCST) and opaque above the LCST. LCST values for the PNIPA‐b‐PMCL aqueous solution were observed to shift to lower temperature than that for PNIPA homopolymers. This work investigates their micellar characteristics in the aqueous phase by fluorescence spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). The block copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 0.29–2.74 mg L?1, depending on polymer compositions, which dramatically affect micelle shape. Drug entrapment efficiency and drug loading content of micelles depend on block polymer compositions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
BACKGROUND: Poly(1‐amino‐2‐naphthol‐4‐sulfonic acid) and its copolymers with aniline are a new class of conducting polymers which can acquire intrinsic protonic doping ability, leading to the formation of highly soluble self‐doped homopolymers and copolymers. Free ? OH and ? NH2 groups in the polymer chain can combine with other functional groups that could be present in protective paints which can thus be successfully used as antistatic materials. RESULTS: This paper reports the formation of nanotubes of polyaniline on carrying out oxidative polymerization of aniline in the presence of 1‐amino‐2‐naphthol‐4‐sulfonic acid (ANSA) in p‐toluenesulfonic acid (PTSA) as an external dopant. The presence of ? SO3H groups in the ANSA comonomer allows the copolymer to acquire intrinsic protonic doping ability. The polymerization mechanism was investigated by analysing the 1H NMR, 13C NMR, Fourier transform infrared and X‐ray photoelectron spectra of the copolymers and homopolymers, which revealed the involvement of ? OH/? NH2 in the reaction mechanism. Scanning and transmission electron microscopy showed how the reaction route and the presence of a dopant can affect the morphology and size of the polymers. Static decay time measurements were also carried out on conducting copolymer films prepared by blending of 1 wt% of copolymers of ANSA and aniline with low‐density polyethylene (LDPE) which showed a static decay time of 0.1 to 0.31 s on dissipating a charge from 5000 to 500 V. CONCLUSION: Copolymers of ANSA with aniline were synthesized in different reaction media, leading to the formation of nanotubes and nanoparticles of copolymer. Blends of 1 wt% of PTSA‐ and self‐doped copolymers of ANSA and aniline with LDPE can be formulated into films with effective antistatic properties. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The specific interactions in ternary 4‐hydroxybenzoic acid (HBA)/poly(2‐vinylpyridine) (P2VPy)/poly(N‐vinyl‐2‐pyrrolidone) (PVP) blends were studied by differential scanning calorimetry, Fourier transform infrared (FTIR) spectroscopy, and electron microscopy. FTIR study shows the existence of hydrogen‐bonding interactions between HBA and P2VPy as well as PVP. The addition of a sufficiently large amount of HBA produces a blend showing one glass‐transition temperature (Tg). Microscopic study shows a drastic reduction in domain size in single‐Tg blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 901–907, 2001  相似文献   

12.
Binder‐free LiFePO4–carbon nanofiber (CNF)–multiwalled carbon nanotube (MWCNT) composites were prepared by electrospinning and thermal treatment to form a freestanding conductive web that could be used directly as a battery cathode without addition of a conductive material and polymer binder. The thermal decomposition behavior of the electrospun LiFePO4 precursor–polyacrylonitrile (PAN) and LiFePO4 precursor–PAN–MWCNT composites before and after stabilization were studied with thermogravimetric analysis (TGA)/differential scanning calorimetry and TGA/differential thermal analysis, respectively. The structure, morphology, and carbon content of the LiFePO4–CNF and LiFePO4–CNF–MWCNT composites were determined by X‐ray diffraction, high‐resolution transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, and elemental analysis. The electrochemical properties of the LiFePO4–CNF and LiFePO4–CNF–MWCNT composite cathodes were measured by charge–discharge tests and electrochemical impedance spectroscopy. The synthesized composites with MWCNTs exhibited better rate performances and more stable cycle performances than the LiFePO4–CNF composites; this was due to the increase in electron transfer and lithium‐ion diffusion within the composites loaded with MWCNTs. The composites containing 0.15 wt % MWCNTs delivered a proper initial discharge capacity of 156.7 mA h g?1 at 0.5 C rate and a stable cycle ability on the basis of the weight of the active material, LiFePO4. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43001.  相似文献   

13.
Poly(2,5‐benzimidazole) (ABPBI)—a promising high‐temperature polymer electrolyte membrane—is characterized over a wide range of temperature (?50 to 220 °C) using broadband dielectric spectroscopy (BDS) to understand the various relaxation processes. The undoped ABPBI membrane shows two major secondary relaxations and a primary α relaxation. The effect of phosphoric acid (PA) and phosphotungstic acid grafted zirconium dioxide (PWA/ZrO2) nanoparticles on the chain relaxation and the proton conductivity is investigated. The phosphoric acid alters the relaxation trends, increases the number of free ions in the polymer matrix, and therefore the conductivity. The shift in the peak frequencies of different chain relaxation processes in the presence of PA and PWA/ZrO2 is attributed to the increase in free volume and the consequent easy motion of the polymer chains. The Fourier transform infra‐red (FTIR) spectroscopy of ABPBI and the acid‐doped composites show all the relevant peaks corresponding to C?C, C?N stretching, and phosphoric acid/phosphates, confirming the formation of ABPBI and doping with PA. The proton conductivity of the membranes is estimated from electrochemical impedance spectroscopy (EIS). To establish the effect of change in crystallinity on relaxations and proton conductivity, the undoped and PA‐doped membranes are characterized using thermogravimetric analysis and in situ XRD at high temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44867.  相似文献   

14.
The very high dope viscosity of concentrated dope of poly[acrylonitrile‐co‐(methyl acrylate)‐co‐(itaconic acid)] (with M?v = 10.67 × 105g mol?1) in DMF could be diminished significantly by the addition of oxalic acid (OXA). The change in steady shear rheological behaviour caused by OXA has been analysed for the dope using a rheometer working in the viscosity mode. The temperature dependence of η0 conformed to the Arrhenius‐Frenkel‐Eyring equation. ΔGv decreased marginally with OXA concentration, and the least value was observed at an OXA concentration of 0.63 % by weight. Shear thinning behaviour was observed under higher shear rates for the terpolymer solutions in the presence and absence of OXA. The pseudoplasticity index (n) showed an abrupt initial increase on addition of OXA. The OXA concentration of 0.63 % by weight was advantageous for decreasing the viscosity of the polymer dope. The reduction in viscosity is attributed to the disturbed polymer‐polymer interactions by way of H‐bonding of OXA with the polymer. OXA‐containing dope at higher shear rate could achieve very low viscosities. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Methylene blue (MB) redox mediator was introduced into polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) blend host to prepare a gel polymer electrolyte (PVA‐PVP‐H2SO4‐MB) for a quasi‐solid‐state supercapacitor. The electrochemical properties of the supercapacitor with the prepared gel polymer electrolyte were evaluated by cyclic voltammetry, galvanostatic charge–discharge, electrochemical impedance spectroscopy, and self‐discharge measurements. With the addition of MB mediator, the ionic conductivity of gel polymer electrolyte increased by 56% up to 36.3 mS·cm?1, and the series resistance reduced, because of the more efficient ionic conduction and higher charge transfer rate, respectively. The electrode specific capacitance of the supercapacitor with PVA‐PVP‐H2SO4‐MB electrolyte is 328 F·g?1, increasing by 164% compared to that of MB‐undoped system at the same current density of 1 A·g?1. Meanwhile, the energy density of the supercapacitor increases from 3.2 to 10.3 Wh·kg?1. The quasi‐solid‐state supercapacitor showed excellent cyclability over 2000 charge/discharge cycles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39784.  相似文献   

16.
A novel monomer called 1,1′‐ferrocenediacyl anilide (FcA) was synthesized from ferrocene (Fc). Copolymerization was carried out between FcA and aniline (ANI) by an electrochemical method. The novel monomer and copolymer were characterized with 1H‐NMR, Fourier transform infrared (FTIR) spectroscopy, and ultraviolet–visible (UV–vis) spectroscopy. The hydrogen protons of the benzene ring were moved to a low field in 1H‐NMR, and the absorption band of N?Q?N (where Q is the quinoid ring) appeared in the FTIR spectrum of the polymer. The peaks of both Fc and the π–π* electronic transition in the UV–vis spectra were redshifted. The results indicate that the copolymer mainly existed as a highly delocalized conjugated system. X‐ray diffraction analysis established further proof, and the process of electrochemical deposition was observed by scanning electron microscopy. The optimal synthesis conditions of the copolymer were determined through changes in the monomer molar ratios and the scan rate. The ideal performance of the copolymer was gained when the monomer molar ratio between FcA and ANI was 1:4 and the scan rate was 50 mV/s. Furthermore, the electrochemical performances were tested in detail by cyclic voltammetry, galvanostatic charge–discharge testing, and electrochemical impedance spectroscopy. The results show that the specific capacitance of poly(1,1′‐ferrocenediacyl anilide‐co‐aniline) increased up to 433.1 F/g at 0.5 A/g, the diffusion resistance was very small, and the durability was good enough. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43217.  相似文献   

17.
Ferrocene‐substituted conducting polymer namely poly(trans‐1‐(4‐methyl‐3′‐thienyl)‐2‐(ferrocenyl)ethene‐co‐3,4‐ethylenedioxythiophene) [P(MTFE‐co‐EDOT)] was synthesized and its electrochromic properties were studied. Monomer, MTFE, was obtained using 2‐(ferrocenyl)ethene and 3‐methyl‐4‐bromothiophene. The structure of monomer was determined via Fourier transform infrared spectroscopy (FTIR), 1H‐NMR, and 13C‐NMR techniques. The copolymer was synthesized using this monomer and EDOT. The resulting copolymer P(MTFE‐co‐EDOT) was characterized by cyclic voltammetry, FTIR, scanning electron microscopy, atomic force microscopy, and UV–vis spectroscopy. The conductivity measurements of copolymer and PEDOT were accomplished by the four‐probe technique. Although poly(trans‐1‐(4‐methyl‐3′‐thienyl)‐2‐(ferrocenyl)ethene) [P(MTFE)] reveals no electrochromic activity, its copolymer with EDOT has two different colors (violet and gray). Band gap (Eg) and λmax of P(MTFE‐co‐EDOT) were determined. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
To develop conjugated polymers with low bandgap, deep HOMO level, and good solubility, a new conjugated alternating copolymer PC‐DODTBT based on N‐9′‐heptadecanyl‐2,7‐carbazole and 5, 6‐bis(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzothiadiazole was synthesized by Suzuki cross‐coupling polymerization reaction. The polymer reveals excellent solubility and thermal stability with the decomposition temperature (5% weight loss) of 327°C. The HOMO level of PC‐DODTBT is ‐5.11 eV, indicating that the polymer has relatively deep HOMO level. The hole mobility of PC‐DODTBT as deduced from SCLC method was found to be 2.03 × 10?4 cm2/Versus Polymer solar cells (PSCs) based on the blends of PC‐DODTBT and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) with a weight ratio of 1:2.5 were fabricated. Under AM 1.5 (AM, air mass), 100 mW/cm?2 illumination, the devices were found to exhibit an open‐circuit voltage (Voc) of 0.73 V, short‐circuit current density (Jsc) of 5.63 mA/cm?2, and a power conversion efficiency (PCE) of 1.44%. This photovoltaic performance indicates that the copolymer is promising for polymer solar cells applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The synthesis and characterization of calcium‐containing poly(urethane‐ether)s, having ionic links in the main chain, is reported. Calcium salt of p‐hydroxybenzoic acid (HBA‐Ca) was prepared from p‐hydroxybenzoic acid (HBA) and used as the chain extender in the preparation of calcium‐containing poly(urethane‐ether)s. Poly(urethane‐ether)s, having two different compositions, were prepared by varying the mole ratios of poly(tetramethylene glycol), hexamethylene diisocyanate, and HBA‐Ca. The synthesized poly(urethane‐ether)s were characterized by infrared spectroscopy, thermogravimetric analysis, and dynamic mechanical analysis. The presence of calcium in the polymer chain was confirmed by energy‐dispersive X‐ray analysis. The inherent viscosity of metal‐containing polymers decreased with the increase in the metal content of the polymer. The introduction of metal into the polymer lowers the thermal stability of the polymers as indicated by the decreased initial decomposition temperature. The glass transition temperature (Tg) and the storage modulus of the metal‐containing polymers increase with the increase in metal content presumably due to the formation of physical crosslink's in the polymer. From the mechanical studies of the polymer, it was observed that the metal‐containing polymers exhibit high tensile strength and modulus. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

20.
In this article, two novel benzobisthiazole‐containing hyperbranched polyamides with different end groups were synthesized, by adjusting the feed molar ratio of the reaction monomers, using 1,3,5‐benzenetricarboxylic acid and 2,6‐diaminobenzo[1,2‐d:4,5‐d']bisthiazole as monomers, polyphosphoric acid as solvent, and catalyst. The molecular structure of the synthesized hyperbranched polymers were speculated by 1H‐nuclear magnetic resonance (NMR) analysis, 13C‐NMR analysis, and Fourier transform infrared analysis. The Mn, Mw, and DB of the carboxyl terminated polymer HB‐COOH are 3264 g/mol, 3350 g/mol, and 44.1%, respectively, with a polydispersity of 1.03. The Mn, Mw, and DB of amino terminated polymer HB‐NH2 are 3340 g/mol, 3420 g/mol, and 41.7%, respectively, with a polydispersity of 1.02. The thermal stability of HB‐NH2 was higher than HB‐COOH in the range of 30 °C–800 °C.These two benzobisthiazole‐containing hyperbranched polyamides were completely amorphous and soluble in DMSO. Their DMSO solutions exhibited strong blue fluorescence. The fluorescent intensity of HB‐NH2 was higher than HB‐COOH. The prepared polymers were potential useful in the area of blue light emitting and display. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43453.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号