首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low crystallinity, the copolyester poly(ethylene terephthalate‐co‐neopentyl terephthalate‐co‐ethylene isophthalate‐co‐neopentyl isophthalate) (PENIT) was synthesized and applied for laminated tin‐free steel. The structures and thermal properties of the copolyester were characterized by 1H‐NMR, thermogravimetry analysis, differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. Differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy results show that the crystallization ability of the copolyester decreased obviously. Meanwhile, the peel strength, crystallinity, and water‐vapor permeability of the copolyester film were also measured at varied lamination temperatures. The result confirm that an improvement in the lamination temperature led to an increased ratio of amorphous PENIT to crystalline PENIT and decreased structural orientation, and the decrease in the structural orientation sped up the increase in the rate of water‐vapor permeability. On the basis of the purpose of reducing a detrimental effect on the corrosion resistance caused by water permeation, a reasonable lamination temperature was selected. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42308.  相似文献   

2.
Poly(3‐octylthiophene), (P3OT) in addition to its electronics properties exhibits a high Kerr coefficient, n2, due to its third order nonlinear dielectric susceptibility. At the wavelength of 1550 nm, this coefficient n2 is one of the highest. So, this material should be suitable to build integrated all optical switching devices. To construct this device, it is necessary to make a single‐mode optical waveguide. For the time being, such a P3OT waveguide has never been obtained due to excessive optical losses. In view to produce single‐mode waveguide with P3OT as a core, we investigated the different causes of these optical losses in the material and in the guiding structure. We characterized the optical transmission at key steps in its development. First, we demonstrated that the intrinsic polymer absorption is not a limiting factor at 1550 nm, and then we studied the transmission properties of planar (1‐D confined light) and channel waveguides (2‐D confined light). The results revealed that better transmission properties can be achieved using planar waveguides rather that confined channel waveguides. This article describes the development and the characterization of the guiding structures that enabled us to identify the main origins of optical losses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Synthesis of a polyfluorene/poly(p‐phenylene vinylene) derivative, the Poly [(9,9′‐di‐hexylfluorenediylvinylene‐alt‐1,4‐phenylenevinylene)‐co‐((9,9′‐(3‐t‐butylpropanoate) fluorene‐1,4‐phenylene)] (LaPPS 42) was performed following Wittig and Suzuki routes. Polyfluorenes and derivatives have been used in electroluminescent devices, and the synthesis described here has the advantage in pave the way to get distinct structures having different emission spectra. An extensive study of its electrochemical, thermomechanical, optical, and structural properties was carried out, as well as its application in electroluminescent devices. Polymer light‐emitting diodes (PLEDs) and polymer light‐emitting electrochemical cells (PLECs) were built using LaPPS 42 as active layer, and their electric and optical characterizations confirm they have a potential as active element in electroluminescent devices. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42579.  相似文献   

4.
The sensing properties of a poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐bithiophene] (F8T2) polymer were investigated at different concentrations and volume percentages. The effects of the concentrations and volume percentages on the sensing parameters were investigated. The sensitivities of F8T2 were found to be 3.190, 1.434, and 0.362 dB/vol % at 290, 580, and 940 nm, respectively. The response of the F8T2 increased with increasing concentration. F8T2 exhibited good sensitivity and response behaviors. Then, the optical parameters based on the refractive indices of the F8T2 at different molarities were calculated. The dispersion energy, moment of the dielectric constant optical spectrum (M?1, M?3), oscillator strength, and contrast of the F8T2 increased with increasing molarity, whereas the average excitation energy or single‐oscillator energy decreased with increasing molarity. The surface morphological properties of the F8T2 polymer film were investigated, and the roughness parameters were obtained. The F8T2 polymer could be used in the fabrication of various sensors because of the good solubility, sensitivity, and response behaviors. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41659.  相似文献   

5.
BACKGROUND: Star‐shaped polymers are very attractive because of their interesting properties such as reduced viscosity, good solubility, low glass transition temperature and fast response to external stimuli. The incorporation of azobenzene moieties in star‐shaped polymers could significantly widen their potential applications in various optical devices. One of the most important properties of the azobenzene chromophore is its reversible transcis photoisomerization induced by UV or visible light. Photoisomerization induces conformational changes in azopolymer chains, which in turn lead to macroscopic variations in chemical and physical properties of the surroundings and media. RESULTS: This study reports the synthesis of azobenzene‐functionalized two‐, three‐ and four‐arm telomers via free radical telomerization using the di‐, tri‐ and tetrafunctional chain transfer agents 1,2‐ and 1,4‐benzenedimethanethiol, trimethylolpropane‐tris(2‐mercaptoacetate) and pentaerythritol‐tetrakis(3‐mercaptopropionate), respectively, in the presence of azobisisobutyronitrile. Azotelomers were characterized using gel permeation chromatography and 1H NMR and Fourier transform infrared spectroscopy. Thermal phase transition behaviors were investigated using differential scanning calorimetry and polarized optical microscopy. Azotelomers synthesized in this study showed reversible photoisomerization and a fast generation of birefringence. CONCLUSION: Considering the photoisomerization behavior and birefringence of the two‐, three‐ and four‐arm azotelomers, it can be concluded that they could be potential candidates for use in various optical devices. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
Nine molecular dynamic simulations of molecular‐imprinting prepolymerization systems were performed to investigate the effects of the type and concentration of crosslinkers (CLs) on key template (T)–functional monomer (FM) complexes. Subsequent analyses revealed that the system with divinylbenzene as the CL had the most stable T–FM complexes, and the mass percentage concentration of divinylbenzene in the prepolymerization system was 9.4%. Nine corresponding imprinted polymers were synthesized by the coupling of the surface‐initiated activator regenerated by electron‐transfer atom‐transfer radical polymerization technique with the hierarchical‐imprinting technique to validate the reliability of the simulation results. The structural properties of the optimal adsorbent were characterized by IR spectrophotometry, scanning electron microscopy, and nitrogen sorption measurements. The Langmuir isotherm fitted the equilibrium data best, and the kinetic data (within 30 min) were well described by the pseudo‐second‐order model. Meanwhile, the prepared adsorbent displayed a higher selectivity to dibenzothiophene compared with other analogs. Finally, the adsorbent was successfully applied for the deep desulfurization of the gasoline sample. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42629.  相似文献   

7.
Graft copolymers of starch with acrylamide and 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) were prepared by reactive extrusion in a twin‐screw extruder. The weight ratio of total monomer to starch was fixed at 1 : 3, while the molar fraction of AMPS in the monomer feed ranged from 0 to 0.119. Monomer to polymer conversions were 85% or greater, with grafting efficiencies of 68% (highest AMPS content) to 85% (no AMPS). Absorbency in distilled water at pH 7 increased linearly with the mole fraction AMPS in the grafted polymer, while absorbencies in 0.9% NaCl were independent of AMPS content. When swollen in water/ethanol mixtures, swelling decreased gradually with increasing ethanol volume fraction, followed by a large decrease over a narrow ethanol concentration. This behavior is similar to that observed for AMPS‐acrylamide gels. The swelling properties suggest these graft copolymers may have applications as responsive materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42405.  相似文献   

8.
The preparation of dialkyl‐substituted poly(2,5‐didecyl‐1,4‐phenylene vinylene) ( PDDPV ) by the Horner‐Emmons polycondensation is described. Its performance in an organic light‐emitting diode (OLED) device architecture is compared with devices prepared from the analogous dialkoxy‐substituted poly(2,5‐didecyloxy‐1,4‐phenylene vinylene) ( PDOPV ) and the corresponding alkyl‐alkoxy‐substituted alternating copolymer. Additionally, the structure, stability, electrochemical, and optical properties of the PPVs were characterized by gel permeation chromatography, thermogravimetric analysis, NMR spectroscopy, cyclic voltammetry, UV‐Visible spectroscopy, and fluorescence spectroscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41162.  相似文献   

9.
Maleopimaric acid (MPA), an important rosin derivative, was used to partially substitute isophthalic acid for the preparation of an anionic polyol (MPP) dispersion. The MPP dispersion was then applied to prepare a novel maleopimaric acid‐modified two‐component waterborne polyurethane (MPP‐2K‐WPU). The influences of NCO:OH molar ratio on the thermal properties, water absorption, surface free energy, and application properties of MPP‐2K‐WPU films were investigated. With increasing NCO:OH molar ratio, the thermal stability, pencil hardness, and ethanol resistance of MPP‐2K‐WPU films were improved, but the water resistance was enhanced firstly and then weakened. The surface free energy of MPP‐2K‐WPU films mainly depended on the dispersion interaction which was related to the structure of macromolecules. In addition, compared with the control sample of PP‐2K‐WPU(1.5:1) film, the MPP‐2K‐WPU(1.5:1) film exhibited improved thermal stability, water resistance, gloss, pencil hardness, and ethanol resistance. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43292.  相似文献   

10.
Two new π‐conjugated polymers, namely poly(p‐phenylenevinylene‐1,3,4‐oxadiazole) (PPVO) and poly(p‐(nitro‐phenylene)vinylene‐1,3,4‐oxadiazole) (PNPVO), were synthesized and characterized. The Gilch polymerization technique, using dihalo derivatives of 1,3,4‐oxadiazoles, was employed to synthesize them under mild reaction conditions. The macromolecules exhibit good solubility in dimethylformamide, formamide and dimethyl sulfoxide and thus effectively address the insolubility issues associated with many oxadiazole derivatives for device fabrication. They show bright luminescence in the blue‐green region of the electromagnetic spectrum and have optical band gaps suited for an emissive layer in organic light‐emitting devices. PPVO and PNPPO show good non‐linear optical responses also in solution phase, with third‐order nonlinear susceptibilities of the order of 10?12esu. Interestingly, they exhibit good antimicrobial characteristics under examination with Escherichia coli and Staphylococcus. The results prove that these macromolecules are ideal materials to use as emissive layers in various light‐emitting devices and NLO applications. The excellent antimicrobial activity can be utilized for their applications in clinical and healthcare areas. © 2016 Society of Chemical Industry  相似文献   

11.
Poly(styrene‐co‐maleic anhydride) (SMA) is a synthetic copolymer with interesting thermal and membrane properties. Schiff bases are one of the most widely used organic compounds with chelating ligands having N, S, and O as donor atoms. A Schiff‐base‐modified SMA was synthesized by the reaction of the copolymer with salicylaldehyde thiosemicarbazone. Gold (Au) nanoparticles (NPs), synthesized by a citrate reduction method were used to prepare the polymer–Au nanocomposites. In this research, we explored and investigated the effects on the linear and nonlinear optical properties of the Schiff‐base‐modified SMA copolymer with the incorporation of Au NPs. Open‐aperture Z‐scan measurements were recorded for the polymer, modified polymer, and polymer–Au nanocomposites at 532 nm with an Nd:YAG laser with a repetition rate of 10 Hz and a pulse width of 5 ns. The results indicate that the addition of the Au NPs effectively enhanced the two‐photon absorption coefficients of the polymer and, thereby, provided a platform for the development of nonlinear optical devices with good optical‐limiting properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45377.  相似文献   

12.
Ultra‐fine 1 mol% CeO2‐10 mol% Sc2O3 co‐doped and stabilized ZrO2 (1Ce10ScSZ) powders with average grain size less than 10 nm in diameter were prepared by hydro/solve‐thermal method using either deionized water, ethanol, or methanol as solvent. As‐synthesized powders were characterized in terms of phase structure, particle morphology, and chemical composition by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), high‐resolution transmission electron microscopy (HRTEM), and inductively coupled plasma‐optical emission spectroscopy (ICP‐OES), respectively. Sintering studying was conducted on pellets of 15 mm in diameter and 3 mm in thickness under uniaxial compaction using 25 MPa at either 600, 800, 1000, 1100, 1200, 1400, or 1500°C for 1 hour. Phase transitions and grain morphologies of those sintered samples were characterized by XRD and field emission scanning electron microscopy (FESEM). Mechanical properties were characterized on dense pellets sintered at 1500°C by nanoindentation. Experimental results showed that ethanol was more effective to synthesize agglomerate‐free 1Ce10ScSZ powders as compared with deionized water and methanol. Choice of solvent affected the environment of hydro/solve‐thermal solution, which led to variation of chemical compositions of powders and porosities of sintered pellets, and therefore, influenced their mechanical performance. Our study showed that solvent was important to make dense, thin, and mechanically robust 1Ce10ScSZ electrolyte for potential applications in electrochemical devices. Absolute values of hardness (H) and Young's modulus (E) measured from our samples are much higher and more consistence than those results obtained from commercial vendors reported in literatures.  相似文献   

13.
Copolymer of thiophen‐3‐yl acetic acid 4‐pyrrol‐1‐yl phenyl ester (TAPE) with N‐methylpyrrole (NMPy) was synthesized by potentiostatic electrochemical polymerization in acetonitrile–tetrabutylammonium tetrafluoroborate solvent–electrolyte couple. The chemical structures were confirmed via Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and UV–vis spectroscopy. Electrochromic and spectroelectrochemical properties of poly(TAPE‐co‐NMPy) [P(TAPE‐co‐NMPy)] were investigated. Results showed that the copolymer revealed color change between light yellow and green upon doping and dedoping of the copolymer, with a moderate switching time. Furthermore, as an application, dual‐type absorptive/transmissive polymer electrochromic device (ECD) based on poly(TAPE‐co‐NMPy) and poly(3,4‐ethylene dioxythiophene) (PEDOT) have been assembled, where spectroelectrochemistry, switching ability, stability, and optical memory of the ECD were investigated. Results showed that the device exhibited good optical memory and stability with moderate switching time. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1988–1994, 2006  相似文献   

14.
Thermoplastic polycarbonate modified polyether‐polyurethane (PEPU) elastomers were prepared by transurethane polycondensation method using poly(oxytetramethylene) glycol of Mn = 2000 and dimethyl‐hexane‐1,6‐dicarbamate as the main raw materials, 1,4‐butanediol as a chain extender and polycarbonate diol (PCDL) as an additive in the presence of dibutyltin oxide as a catalyst. The effect of the PCDL on the PEPUs' structure, intrinsic viscosity, molecular weight, mechanical, optical, and thermal properties, and water resistance were studied. The polycarbonate modified PEPUs showed better mechanical and thermal properties, but lower molecular weight and optical properties than the PEPUs. The PEPUs modified by PCDL1000 exhibited better performance, including mechanical, optical, and thermal properties, than those by PCDL2000. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42804.  相似文献   

15.
Shape‐memory polymers (SMPs) are an emerging class of active polymers that can be used on a wide range of reconfigurable structures and actuation devices. In this study, an epoxy‐based SMP was synthesized, and its thermomechanical behaviors were comprehensively characterized. The stress–strain behavior of the SMP was determined to be nonlinear, finite deformation in all regions. Strain‐energy‐based models were used to capture the complicated stress–strain behavior and shape‐recovery response of the SMP. Among various strain energy functions, the stretch‐based Ogden model provided the best fit to the experimental observations. Compared to the sophisticated models developed for SMPs, the strain‐energy‐based model was found to be reliable and much easier to use for practical SMP designs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41861.  相似文献   

16.
A novel thermal stability and highly transparent silicone resin‐type material was prepared via hydrosilylation of vinyl‐polyhedral oligomeric silsesquioxanes (POSS)‐grafted methylhydrosilicone oil and vinylmethylsilicone oil in the presence of Karstedt catalyst. The morphology, mechanical property, thermal stability, optical transmittance, thermal‐oxidation resistance of the vinyl‐POSS‐reinforced silicone resins were systematically investigated. Scanning electron microscopy showed that the vinyl‐POSS‐reinforced silicone resins had good compatibility with polydimethylsiloxane (PDMS) systems. The mechanical analysis and thermo gravimetric analysis indicated that the mechanical properties and thermal stability increased with increasing quantity of vinyl‐POSS. However, the optical transmittance increased with the increasing amount of vinyl‐POSS rather than decreased. In addition, the incorporation of vinyl‐POSS did not improve the thermal resistance of the PDMS polymers. The product has the potential application for LED packaging. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42187.  相似文献   

17.
We investigated the effect of varying polymer crystallinity, morphology, and optical property, produced by adding four different co‐solvents in to the poly(3‐hexylthiophene) (P3HT): [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) active layer blend solution, on the functioning of an inverted polymeric solar device. Photovoltaic devices primed with cyclohexanone co‐solvent showed the best performance with power conversion efficiency (PCE) reaching a value of 3.01 ± 0.04%. Improvement in efficiency is related to an increase in photocurrent which is due to a combined result of ordered P3HT crystallite growth, as well as of the precise size and phase separation of domains. POLYM. ENG. SCI., 55:1382–1388, 2015. © 2015 Society of Plastics Engineers  相似文献   

18.
Zero–zero‐birefringence polymers which exhibit no orientational birefringence and no photoelastic birefringence may be suitable candidates for the components of optical devices. To develop zero–zero‐birefringence polymers, a novel copolymerization system is required. We investigated two types of birefringence of poly(N‐methylmaleimide) (PMeMI) and showed that PMeMI exhibits positive orientational and photoelastic birefringence. On the basis of the results, we calculated the optimal composition for compensating both types of birefringence by solving three equations which describe the relationship between birefringence properties and weight fraction of monomers. When the copolymer compositions were MMA/BzMA/MeMI = 86/8/6 and 88/8/4 (wt %), zero–zero‐birefringence polymers were obtained. By using MeMI as a comonomer, these zero–zero‐birefringence polymers have a much higher glass transition temperature (Tg) than those of previous researches. Also, this polymer film has high transparency comparable with that of PMMA film. Therefore, we conclude that we successfully prepared zero–zero‐birefringence polymers using N‐substituted maleimide and that N‐substituted maleimide is a promising material for zero–zero‐birefringence polymers for optical devices. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40423.  相似文献   

19.
We demonstrated a facile route to the preparation of self‐assembled poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐TrFE)] nanodots from spin‐coated thin films. We found that the initial film thickness would play an important role in the formation of such P(VDF‐TrFE) nanodots. Interestingly, the electric dipoles of such nanodots were self‐aligned toward the bottom electrode and their ferroelectric properties were determined by using piezoresponse force microscopy. In addition, the self‐polarized ferroelectric nanostructures were introduced to small molecular organic photovoltaic devices and allowed for enhancing the short circuit current density (Jsc) from 9.4 mA/cm2 to 10.2 mA/cm2 and the power conversion efficiency from 2.37% to 2.65%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41230.  相似文献   

20.
In this study, we fabricated poly(ethylene terephthalate) (PET)/clay, PET/poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG), and PET/PETG/clay nanocomposite plates and biaxially stretched them into films by using a biaxial film stretching machine. The tensile properties, cold crystallization behavior, optical properties, and gas and water vapor barrier properties of the resulting films were estimated. The biaxial stretching process improved the dispersion of clay platelets in both the PETG and PET/PETG matrices, increased the aspect ratio of the platelets, and made the platelets more oriented. Thus, the tensile, optical, and gas‐barrier properties of the composite films were greatly enhanced. Moreover, strain‐induced crystallization occurred in the PET/PETG blend and in the amorphous PETG matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42207.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号