首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, maleated–grafted ethylene‐co‐vinyl acetate (EVA‐g‐MA) was used as the interfacial modifier for polypropylene/polyamide‐6 (PP/PA6) blends, and effects of its concentration on the mechanical properties and the morphology of blends were investigated. It was found that the addition of EVA‐g‐MA improved the compatibility between PP and PA6 and resulted in a finer dispersion of dispersed PA6 phase. In comparison with uncompatibilized PP/PA6 blend, a significant reduction in the size of dispersed PA6 domain was observed. Toluene‐etched micrographs confirmed the formation of interfacial copolymers. Mechanical measurement revealed that the addition of EVA‐g‐MA markedly improved the impact toughness of PP/PA6 blend. Fractograph micrographs revealed that matrix shear yielding began to occur when EVA‐g‐MA concentration was increased upto 18 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3300–3307, 2006  相似文献   

2.
The effect of compatibilizers on the blending torque, crystallization behavior, intercalation level, thermal stability and morphology of EVOH/treated clay systems was investigated. Maleic anhydride‐grafted ethylene vinyl acetate (EVA‐g‐MA) or maleic anhydride‐grafted linear low density polyethylene (LLDPE‐g‐MA) were used as compatibilizers of EVOH with clay, in various concentrations (1, 5 and 10 wt%). The blends were processed using Brabender Plastograph and characterized by XRD, SEM, DSC, DMTA and TGA. X‐ray diffraction shows advanced intercalation within the galleries when the compatibilizers were added. Unique results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems, which plays a major role. Thermal analysis showed that with increasing compatibilizer content, lower crystallinity levels result, until at a certain content no crystallization has taken place. Significantly higher viscosity levels were obtained for the EVOH/clay blends compared to the neat polymer, as seen by a dramatic torque increase when processed in the Brabender machine. The DMTA spectra showed lower Tg values for the compatibilized nanocomposites compared to the neat EVOH and the uncompatibilized composites. Storage modulus was higher compared to the uncompatibilized EVOH/clay blend when EVA‐g‐MA compatibilizer was added (at all concentrations), and only at low contents of LLDPE‐g‐MA. TGA results show significant improvement of the blends thermal stability compared to the neat EVOH, and to the uncompatibilized blend, indicating an advanced intercalation.  相似文献   

3.
Polystyrene (PS)/polyamide 1212 (PA 1212) blends were compatibilized with a maleated triblock copolymer of styrene–(ethylene‐co‐butene)–styrene (SEBS‐g‐MA). Scanning electron microscopy revealed that the addition of SEBS‐g‐MA was beneficial to the dispersion of PA 1212 in the PS matrix because of the reaction between them. The variation of the fraction of SEBS‐g‐MA in the blends allowed the manipulation of the phase structure, which first formed a sheetlike structure and then formed a cocontinuous phase containing PA 1212/SEBS‐g‐MA core–shell morphologies. As a result, the mechanical properties, especially the Charpy notched impact resistance, were significantly improved with the addition of SEBS‐g‐MA. Differential scanning calorimetry (DSC) data indicated that the strong interaction between SEBS‐g‐MA and PA 1212 in the blends retarded the crystallization of PA 1212. The heat distortion temperature of the compatibilized blends was improved in comparison with that of the unmodified blend, probably because of the apparent increase in the glass‐transition temperature with an increasing concentration of SEBS‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1354–1360, 2005  相似文献   

4.
Blends of polycarbonate (PC) and acrylonitrile ‐ ethylene‐propylene‐diene‐styrene (AES) were reactive compatibilized by styrene‐maleic anhydride copolymers (SMA). The changes in phase morphology and interfacial characteristics of the blends as a function of maleic anhydride content of SMA and the concentration of compatibilizer have been systematic studied. The occurrence of reaction between the terminal hydroxyl groups of PC and the maleic anhydride (MA) of compatibilizer was confirmed by fourier transform infrared (FTIR) spectroscopy. A glass transition temperature (Tg) with an intermediate value between Tg(AES) and Tg(PC) was found on differential scanning calorimeter (DSC) curves of PC/AES blends compatibilized with SMA contains high levels of MA. Furthermore, at lower compatibilizer content, increase of the compatibilizer level in blends result in decreasing gap between two Tgs corresponding to the constituent polymers. Small angle X‐ray scattering (SAXS) test results indicated that compatibilizer concentration for the minimum of blend interface layer's thickness was exactly the same as it was when compatibilized PC/AES blend exhibited optimal compatibility in DSC test. The observed morphological changes were consistent well with the DSC and SAXS test results. A new mechanism of interfacial structural development was proposed to explain unusual phenomena of SMA compatibilized PC/AES blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42103.  相似文献   

5.
Compatible polymer blends of polypropylene (PP) with an amorphous polyamide (aPA) were obtained through reactive compatibilization by adding 20% maleic anhydride‐modified copolymer (PP‐g‐MA) to the blends. The blends were made up of a pure PP phase and an aPA‐rich phase where very small amounts of PP were detected. The dispersed phase particle size decreased considerably indicating that compatibilization occurred. Young's modulus of the compatibilized blends increased with respect to that of the uncompatibilized ones. The compatibilized blends were highly ductile, and the impact strength also improved, proving that compatibilization occurred under a broad range of experimental conditions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

6.
Blends of compatibilized polyoxymethylene (POM)/ethylene butylacrylate copolymer (EBA)/ethylene‐methyl acrylate‐glycidyl methacrylate copolymer (EMA‐GMA) and uncompatibilized POM/EBA were investigated. The notched impact strength of the compatibilized blends was higher than that of their uncompatibilized counterparts. The toughness of the POM blends was improved obviously with relatively low loading of EBA. Fourier transform infrared spectroscopy (FTIR) spectra of EMA‐GMA, pure POM, and POM/EBA/EMA‐GMA blends indicated that epoxy groups of EMA‐GMA reacted with terminal hydroxyl groups of POM molecular chains. The glass‐transition temperature (Tg) values of the POM matrix and the EBA phase were observed shifted to each other in the presence of EMA‐GMA compatibilizer indicating that the compatibilized blends had better compatibility than their uncompatibilized counterparts. With the addition of EBA to POM, both the compatibilized and uncompatibilized blends showed higher onset degradation temperature (Td) than that of pure POM and the Td values of the compatibilized blends were higher than those of their uncompatibilized counterparts. The scanning electron microscopy showed better EBA particles distribution state in the compatibilized system than in the uncompatibilized one. The compatibilized blend with an obvious rougher impact fracture surface indicated the ductile fracture mode. POLYM. ENG. SCI., 58:1127–1134, 2018. © 2017 Society of Plastics Engineers  相似文献   

7.
Both uncompatibilized and compatibilized blends based on polyamide 12 (PA12) and isotactic polypropylene (PP) were prepared in a Brabender Plastograph®. The compatibiliser used was maleic anhydride functionalized polypropylene (PP‐g‐MA). Phase morphology of the blends was inspected in scanning electron microscope (SEM) on cryogenically fractured etched surfaces of the specimens. PA12/PP blends possessed a nonuniform and unstable morphology owing to the incompatibility between their constituents. Addition of compatibiliser improved the interfacial characteristics of the blends by retarding the rate of coalescence. So, the phase morphology became more fine, uniform, and stable. Tensile properties of both uncompatibilized and compatibilized blends were measured as a function of blend composition and compatibiliser concentration. Uncompatibilized blends displayed inferior mechanical properties to compatibilized ones; especially for those containing 40–60 wt % of PP. Reactive compatibilisation of blends was found to be efficient and improved the tensile strength of the blends considerably. Addition of PP‐g‐MA improved the interfacial adhesion, decreased the interfacial tension, and thereby, enhanced the tensile strength by 85%. Finally, various models were adopted to describe the tensile strength of the blends. The experimental data exhibited a reasonably good fit with Nielsen's first power law model. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
In this article, ethylene–propylene–diene‐rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP‐g‐AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP‐g‐AA had taken place, and PP‐g‐EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 μm, respectively. The eEPDM together with the introduction of PP‐g‐AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP‐g‐EPDM copolymer improved the impact strength and yielded a tougher PP blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3949–3954, 2006  相似文献   

9.
Mechanical properties and morphological studies of compatibilized blends of polyamide‐6 (PA‐6)/K resin grafted with maleic anhydride (K‐g‐MAH) and PA‐6/K resin/K‐g‐MAH were investigated as functions of K resin/K‐g‐MAH and dispersed phase K resin concentrations, and all the blends were prepared using twin screw extruder followed by injection molding. Scanning electron microscopy (SEM) were used to assess the fracture surface morphology and the dispersion of the K resin in PA‐6 continuous phase, the results showing extensive deformation in presence of K‐g‐MAH, whereas, uncompatibilized PA‐6/K resin blends show dislodging of K resin domains from the PA‐6 matrix. Dynamic mechanical thermal analysis (DMTA) test reveals the partially miscibility of PA‐6 with K‐g‐MAH, and differential scanning calorimetry (DSC) results further identified that the introduction of K‐g‐MAH greatly improved the miscibility between PA‐6 and K resin. The mechanical properties of PA‐6/K resin blends and K‐g‐MAH were studied through bending, tensile, and impact properties. The Izod notch impact strength of PA‐6/K‐g‐MAH blends increase with the addition of K‐g‐MAH, when the K‐g‐MAH content adds up to 20 wt %, the impact strength is as more than 6.2 times as pure PA‐6, and accompanied with small decrease in the tensile and bending strength less than 12.9% and 17.5%, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Rheological and morphological properties of melt processed poly(ethylene terephthalate) (PET)/polypropylene (PP) blends are presented. Two types of compatibilizer namely, PP‐g‐MA <MA= maleic anhydtide> and Elvaloy PTW, an n‐butyl acrylate glycidyl methacrylate ethylene terpolymers, were incorporated at different levels to the PET/PP blend system. Scanning electron microscopy revealed that the dispersed particle sizes were smaller in PET‐rich blends than PP‐rich blends. With increasing compatibilizer level, the refinement of morphology was observed in both the systems. However, the blends compatibilized with PTW showed a more refined (smaller) particle size, and at high PTW content (10 wt%), the morphology changed towards monophasic. The significant changes in morphology were attributed to the highly reactive nature of PTW. Investigation of rheological properties revealed that the viscosity of the PET/PP blends followed typical trends based on mixing rule, which calculates the properties of blends based on a linear average. Incorporation of PP‐g‐MA into the blends resulted in a negative deviation in the viscosity of the system with respect to that of the neat blend. With increasing PP‐g‐MA level, the deviation became more pronounced. Although incorporation of the compatibilizer into the PET/PP blends refined the morphology, it led to a drastic drop of viscosity, which could be attributed to inherently lower molecular weight of the compatibilizer. In the case of the blends compatibilized by PTW, a strong positive deviation in rheological properties was observed that confirmed the stronger interaction between the blend components due to reactive compatibilization process, which led to the more refined morphology in this series of blends. J. VINYL ADDIT. TECHNOL., 19:25–30, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We applied lauryl lactam (LA)–caprolactone (CL) block copolymer [P(LA‐b‐CL)] as a compatibilizing agent for immiscible poly(vinyl chloride) (PVC) blends with various polymers. These blends possess high thermal performance and toughness. We investigated the effect of P(LA‐b‐CL) as a compatibilizing agent for immiscible PVC blends with poly(ω‐lauryl lactam) [polyamide 12 (PA12)]. We also described the invention of a new compatibilizing agent system involving P(LA‐b‐CL) for PVC/polypropylene (PP) blends. The mechanical and thermal properties of (1) PVC/PA12 blend compatibilized with P(LA‐b‐CL) and (2) PVC/PP blend compatibilized with P(LA‐b‐CL)/PA12/maleic anhydride–modified PP were both enhanced. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1983‐1992, 2004  相似文献   

13.
The effect of phase interaction induced by reactive compatibilization during high shear and extensional flow in polyamide (PA6) and ethylene‐co‐butyl acrylate (EBA) blends was studied using advanced dual bore capillary rheometer. The viscosity‐composition behavior of the uncompatibilized PA6/EBA blends exhibited negative deviation behavior from log‐additivity rule. The interfacial slip mechanism, operative between the matrix PA6 and dispersed EBA during shear flow was studied by the use of Lin's and Bousmina‐Palierne‐Utracki (BPU) model for viscosity for the blends under the processing conditions. On the other hand, the compatibilized PA6/EBA‐g‐MAH0.49/EBA blends with varying dispersed phase volume fraction show positive deviation behavior. The reactive compatibilizers EBA‐g‐MAH0.49 and EBA‐g‐MAH0.96 increased the phase interaction with adequate reduction in the dynamic interfacial tension, which favored the particle break‐up and stabilized the morphology in the compatibilized blends. The extensional viscosity of the blends has enhanced because of the inclusion of EBA in all the uncompatibilized and compatibilized blends. The melt elasticity and elasticity function were systematically studied from first normal stress coefficient functions (ψ1). The variation in the recoverable shear strain (γR), shear rate dependent relaxation time (λ) and shear compliance (Jc) under various shear rates were thoroughly analyzed for all the blend compositions. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
T.S. Omonov  C. Harrats  G. Groeninckx 《Polymer》2005,46(26):841-12336
Phase morphology development in ternary uncompatibilized and reactively compatibilized blends based on polyamide 6 (PA6), polypropylene (PP) and polystyrene (PS) has been investigated. Reactive compatibilization of the blends has been performed using two reactive precursors; maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride copolymer (SMA) for PA6/PP and PA6/PS pairs, respectively. For comparison purposes, uncompatibilized and reactively compatibilized PA6/PP and PA6/PS binary blends, were first investigated. All the blends were melt-blended using a co-rotating twin-screw extruder. The phase morphology investigated using scanning electron microscope (SEM) and selective solvent extraction tests revealed that PA6/PP/PS blends having a weight percent composition of 70/15/15 is constituted from polyamide 6 matrix in which are dispersed composite droplets of PP core encapsulated by PS phase. Whereas, a co-continuous three-phase morphology was formed in the blends having a composition of 40/30/30. This morphology has been significantly affected by the reactive compatibilization. In the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends, PA6 phase was no more continuous but gets finely dispersed in the PS continuous phase. The DSC measurements confirmed the dispersed character of the PA6 phase. Indeed, in the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends where the PA6 particle size was smaller than 1 μm, the bulk crystallization temperature of PA6 (188 °C) was completely suppressed and a new crystallization peak emerges at a lower temperature of 93 °C as a result of homogeneous nucleation of PA6.  相似文献   

15.
Waste poly(ethylene terephthalate) (W‐PET)/acrylonitrile‐butadiene‐styrene (ABS) blends were prepared with a variety of compositions at several rotor speeds in an internal mixer, replacing ABS with different maleated ABS (ABS‐g‐MA) samples in compatibilized blends. A Box–Behnken model for three variables, with three levels, was chosen for the experimental design. ABS‐g‐MA‐based samples exhibited finer particles with a more uniform particle size distribution than ABS‐based ones, as a consequence of the compatibilizing process. Rheological results implied a greater elastic nature for compatibilized blends which increased in the presence of more ABS content; the same trend was observed for complex viscosity. With increasing ABS‐g‐MA or MA concentration, more shear thinning behavior was observed similar to that of ABS; whereas the uncompatibilized blends showed Newtonian behavior like that of W‐PET. The observed shifting in TgW‐PET and TgABS obtained from dynamic mechanical thermal analysis confirmed the good compatibility in W‐PET/ABS‐g‐MA blends in contrast with that in ordinary W‐PET/ABS blends. The mechanical properties were measured and modeled versus the various factors considered in a response surface methodology. The experimental data found a good fit with the obtained equation models. The mechanical properties of the compatibilized blends showed a large positive deviation from the mixing rule, while the uncompatibilized samples had lower properties, even compared to those predicted by the mixing rule. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

16.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

17.
In a blend of two immiscible polymers a controlled morphology can be obtained by adding a block or graft copolymer as compatibilizer. In the present work blends of low‐density polyethylene (PE) and polyamide‐6 (PA‐6) were prepared by melt mixing the polymers in a co‐rotating, intermeshing twin‐screw extruder. Poly(ethylene‐graft‐polyethylene oxide) (PE‐PEO), synthesized from poly(ethylene‐co‐acrylic acid) (PEAA) (backbone) and poly(ethylene oxide) monomethyl ether (MPEO) (grafts), was added as compatibilizer. As a comparison, the unmodified backbone polymer, PEAA, was used. The morphology of the blends was studied by scanning electron microscopy (SEM). Melting and crystallization behavior of the blends was investigated by differential scanning calorimetry (DSC) and mechanical properties by tensile testing. The compatibilizing mechanisms were different for the two copolymers, and generated two different blend morphologies. Addition of PE‐PEO gave a material with small, well‐dispersed PA‐spheres having good adhesion to the PE matrix, whereas PEAA generated a morphology characterized by small PA‐spheres agglomerated to larger structures. Both compatibilized PE/PA blends had much improved mechanical properties compared with the uncompatibilized blend, with elongation at break b) increasing up to 200%. Addition of compatibilizer to the PE/PA blends stabilized the morphology towards coalescence and significantly reduced the size of the dispersed phase domains, from an average diameter of 20 μm in the unmodified PE/PA blend to approximately 1 μm in the compatibilized blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2416–2424, 2000  相似文献   

18.
In attempts to improve the compatibility of polypropylene (PP) with polyethylene terephthalate (PET), a maleic anhydride grafted PP (PP‐g‐MA) was evaluated as a compatibilizer in a blend of 30/70 wt % PP/PET. PP‐g‐MA was produced from isotactic homopolymer PP utilizing the technique of solid phase graft copolymerization. Qualitative confirmations of the grafting were made by Fourier transform infrared spectroscopy (FTIR). Three different weight percent of compatibilizer, PP‐g‐MA, i.e., 5, 10, and 15 wt % have been used in PP/PET blends. The compatibilizing efficiency for PP/PET blend was examined using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM) of crycrofractured surfaces, and energy dispersive X‐ray spectrum (EDAX). The results show that the grafted PP promotes a fine dispersed phase morphology, improves processability, and modifies the crystallization behavior of the polyester component. These effects are attributed to enhance phase interaction resulting in reduced interfacial tension. Also, the results show that the compatibilizing effects of the three amounts of grafted PP in blend are different and dependent on the amount used. Adding 10 wt % of compatibilizer into blend produced the finest dispersed morphology. Elemental analysis results show that PP is matrix. DSC determination revealed that the melting temperature (Tm) of the PET component declined to some extent by comparison with neat PET. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3986–3993, 2007  相似文献   

19.
Synthesis and characterization of a novel toughener–compatibilizer for polypropylene (PP)–montmorillonite (MMT) nanocomposites were conducted to provide enhanced mechanical and thermal properties. Poly(ethylene oxide) (PEO) blocks were synthetically grafted onto maleic anhydride‐grafted polystyrene‐block‐poly(ethylene/butylene)‐block‐polystyrene (SEBS‐g‐MA). Special attention was paid to emphasize the effect of PEO‐grafted SEBS (SEBS‐g‐PEO) against SEBS‐g‐MA on morphology, static/dynamic mechanical properties and surface hydrophilicity of the resultant blends and nanocomposites. It was found that the silicate layers of neat MMT are well separated by PEO chains chemically bonded to nonpolar SEBS polymer without needing any organophilic modification of the clay as confirmed by X‐ray diffraction and transmission electron microscopy analyses. From scanning electron microscopy analyses, elastomeric domains interacting with MMT layers via PEO sites were found to be distributed in the PP matrix with higher number and smaller sizes than the corresponding blend. As a benefit of PEO grafting, SEBS‐g‐PEO‐containing nanocomposite exhibited not only higher toughness/impact strength but also increased creep recovery, as compared to corresponding SEBS‐g‐MA‐containing nanocomposite and neat PP. The damping parameter of the same nanocomposite was also found to be high in a broad range of temperatures as another advantage of the SEBS‐g‐PEO toughener–compatibilizer. The water contact angles of the blends and nanocomposites were found to be lower than that of neat hydrophobic PP which is desirable for finishing processes such as dyeing and coating. © 2018 Society of Chemical Industry  相似文献   

20.
Fractionated crystallization behavior of dispersed PA6 phase in PP/PA6 blends compatibilized with PP‐g‐MAH was investigated by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) in this work. The lack of usual active heterogeneities in the dispersed droplet was the key factor for the fractionated crystallization of PA6. The crystals formed with less efficient nuclei might contain more defects in the crystal structures than those crystallized with the usual active nuclei. The lower the crystallization temperature, the lesser the perfection of the crystals and the lower crystallinity would be. The fractionated crystallization of PP droplets encapsulated by PA6 domains was also observed. The effect of existing PP‐g‐MAH‐g‐PA6 copolymer located at the interface on the fractionated crystallization could not be detected in this work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3742–3755, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号