首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The change of the glass transition temperatures (Tg) in the blend of poly(L ‐lactic acid) (PLLA) and the copolymers of poly(D,L ‐lactic acid) and poly(glycolic acid) (PDLLA‐PGA) with different D,L ‐lactic acid and glycolic acid composition ratio (50 : 50, 65 : 35, and 75 : 25) was studied by DSC. Dynamic mechanical measurement and tensile testing were performed at various temperatures around Tg of the blend. In the blend of PLLA and PDLLA‐PGA50 (composition ratio of PDLLA and PGA 50 : 50), Tg decreased from that of PLLA (about 58°C) to that of PDLLA‐PGA50 (about 30°C). A single step decrease was observed in the DSC curve around Tg between the weight fraction of PLLA (W(PLLA)) 1.0 and 0.7 (about 52°C) but two‐step changes in the curve are observed between W(PLLA) = 0.6 and 0.3. The Tg change between that of PLLA and that of PDLLA‐PGA and the appearance of two Tgs suggest the existence of PLLA rich amorphous region and PDLLA‐PGA copolymer rich amorphous region in the blend. A single step decrease of E′ occurs at around Tg of the pure PLLA but the two‐step decrease was observed at W(PLLA) = 0.6 and 0.4, supporting the existence of the PLLA rich region and PDLLA‐PGA rich region. Tensile testing for various blends at elevated temperature showed that the extension without yielding occurred above Tg of the blend. Partial miscibility is suggested for PLLA and PDLLA‐PGA copolymer blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2164–2173, 2004  相似文献   

2.
Di(isononyl) cyclohexane‐1,2‐dicarboxylate (DINCH) was used as a new plasticizer for poly(lactic acid) (PLA), and the effects of DINCH and tributyl citrate ester (TBC) on the morphology, mechanical and thermal properties, and durability of PLA were compared. DINCH has limited compatibility with PLA, leading to PLA/DINCH blends with phase separation in which DINCH forms spherical dispersed phase. TBC is compatible with PLA and evenly distributed in PLA. Plasticized PLA with 10 and 20 phr DINCH have a constant glass transition temperature (Tg) of 50°C and are stiff materials with high elongation at break and impact strength. TBC could significantly decrease the Tg and increase the crystallinity of PLA, and PLA/TBC (100/20) blend is a soft material with a Tg of 24°C. The durability of plasticized PLA was characterized by weight loss measurement under water immersion, mechanical properties, and thermal analysis. The results reveal that PLA/DINCH blends have better water resistance and aging resistance properties than PLA/TBC blends, which is attributed to the relatively high hydrophobicity of DINCH and high Tg of PLA/DINCH blends. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

3.
Poly(aryl thioether)s (F‐PTEs) containing 2,3,5,6‐tetrafluoro‐1,4‐phenylene moiety and polar moiety, such as 1,3,4‐ozadiazole, ether ketone, and amide groups, were synthesized by nucleophilic aromatic substitution reaction of aryl fluorides and 4,4′‐thiobisbenzenthiol. F‐PTEs were amorphous with good thermal properties including high glass transition temperature (Tg) and thermal stability, solubility, and hydrophobicity. F‐PTEs were transformed into poly(aryl sulfone)s (F‐PSs) by the oxidation reaction with hydrogen peroxide in acetic acid. Because of the sulfone group, the Tgs of the F‐PSs were 30–40°C higher than those of the corresponding F‐PTEs. F‐PSs maintained solubility in polar aprotic solvents and exhibited hydrophobicity in spite of the content of polar sulfone groups due to the highly substituted fluorine atoms. These F‐PTEs and F‐PSs were a new class of high‐performance polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Biodegradable polymer blends prepared by blending poly(3‐hydroxybutyrate) (PHB) and corn starch do not form intact films due to their incompatibility and brittle behavior. For improving their compatibility and flexibility, poly(vinyl acetate) (PVAc) was grafted from the corn starch to prepare the PVAc‐modified corn starch (CSV). The resulting CSV consisted of 47.2 wt% starch‐g‐PVAc copolymer and 52.8 wt% PVAc homopolymer and its structure was verified by FT‐IR analysis. In comparison with 35°C of the neat PVAc, the glass transition temperature (Tg) of the grafted PVAc chains on starch‐g‐PVAc was higher at 44°C because of the hindered molecular mobility imposed from starch on the grafted PVAc. After blending PHB with the CSV, structure and thermal properties of the blends were investigated. Only a single Tg was found for all the PHB/CSV blends and increased with increasing the CSV content. The Tg‐composition dependence of the PHB/CSV blends was well‐fitted with the Gordon‐Taylor equation, indicating that the CSV was compatible with the PHB. In addition, the presence of the CSV could raise the thermal stability of the PHB component. It was also found that the presence of the PHB and PVAc components would not hinder the enzymatic degradation of the corn starch by α‐amylase. POLYM. ENG. SCI., 55:1321–1329, 2015. © 2015 Society of Plastics Engineers  相似文献   

5.
Using D ,L ‐lactic acid (LA) and multifunctional group compound triethanolamine (TEA) as starting materials, a novel biodegradable material poly(D ,L ‐lactic acid‐triethanolamine) [P(LA‐TEA)] was directly synthesized by simpler and practical melt polycondensation. The appropriate synthetic condition was discussed in detail. When the molar feed ratio LA/TEA was 30/1, the optimal synthesis conditions were as follows: a prepolymerization time of 12 h; 0.5 weight percent (wt %) SnO catalyst; and melt copolycondensation for 8 h at 160°C, which gave a novel star‐shaped poly(D,L ‐lactic acid) (PDLLA) modified by TEA with the maximum intrinsic viscosity [η] 0.93 dL g−1. The copolymer P(LA‐TEA) as a different molar feed ratio was characterized by [η], Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H‐NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X‐ray diffraction (XRD). Increasing the molar feed ratio of LA/TEA, Tg and Mw increased. However, all copolymers were amorphous, and their Tg (12.2°C–32.5°C) were lower than that of homopolymer PDLLA. The biggest Mw was 9400 Da, which made the biodegradable polymer be potentially used as drug delivery carrier, tissue engineering material, and green finishing agent in textile industry. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Semi‐crystalline dendritic poly(ether‐amide)s were synthesized by modifying hydroxyl end‐groups of dendritic poly(ether‐amide) with aromatic urethane acrylate and octadetyl isocyanate. The ratio of these modifiers can adjust the final properties of products to fulfill the requirements of UV‐curable powder coatings. These UV‐curable semi‐crystalline dendritic poly(ether‐amide)s have a Tg in the range of 41–45°C and a Tm of around 120°C. Their thermal behavior and semi‐crystalline properties were studied by DSC and XRD. The photopolymerization kinetics was investigated by Photo‐DSC. The residual unsaturation, thermal stability, and hardness of the UV‐cured films were also studied. The obtained results show that these semi‐crystalline dentritic poly(ether‐amide)s may be used as prepolymers in UV‐curable powder coating systems. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 287–291, 2003  相似文献   

7.
Poly(lactic acid)/poly(methyl methacrylate) blends containing halloysite nanotube (2 and 5 phr) and epoxidized natural rubber (5–15 phr) were prepared by melt mixing. The impact strength of poly(lactic acid)/poly(methyl methacrylate) blend was slightly improved by the addition of halloysite nanotube. Adding epoxidized natural rubber further increased the impact strength of poly(lactic acid)/poly(methyl methacrylate)/halloysite nanotube nanocomposite. Single Tg of poly(lactic acid)/poly(methyl methacrylate) is observed and this indicates that poly(lactic acid)/poly(methyl methacrylate) blend is miscible. The addition of halloysite nanotube into poly(lactic acid)/poly(methyl methacrylate) slightly increased the Tg of the blends. The epoxidized natural rubber could encapsulate some of the halloysite nanotube and prevent the halloysite nanotube from breaking into shorter length tube during the melt shearing process.  相似文献   

8.
A series all‐aromatic poly(esterimide)s with different molar ratios of N‐(3′‐hydroxyphenyl)‐trimellitimide (IM) and 4‐hydroxybenzoic acid (HBA) (IM/HBA = 0.3/0.7 and 0.7/0.3) was prepared with the aim to design flexible high Tg films. Melt‐pressed films, either from high molecular weight polymer or cured phenylethynyl precursor oligomers, exhibit Tgs in the range of 200 °C to 242 °C and are brittle. After a thermal stretching procedure, the films became remarkably flexible and very easy to handle. In addition, the thermally stretched 3‐IM/7‐HBA and 7‐IM/3‐HBA films show tensile strengths of 108 MPa and 169 MPa, respectively. Thermal treatment increased the Tg of 3‐IM/7‐HBA from 205 °C to 248 °C, whereas the Tg of 7‐IM/3‐HBA increased from 230 °C to 260 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 133, 44774.  相似文献   

9.
Two monomers, 4,4′‐bis(4‐phenoxybenzoyl)biphenyl (BPOBBP) and 4,4′‐diphenoxydiphenyl sulfone (DPODPS), were conveniently synthesized via simple synthetic procedures from readily available materials. A series of novel poly(aryl ether ketone)s containing both biphenylene moieties and sulfone linkages in the main chain were synthesized by the modified electrophilic Friedel‐Crafts acylation copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBBP and DPODPS, over a wide range of BPOBBP/DPODPS molar ratios. The resulting polymers were characterized by Fourier transform infrared spectroscopy (FT‐IR), wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), etc. The results indicated that the copolymers with 30 to 35 mol% DPODPS were semicrystalline and had remarkably increased glass transition temperatures (Tgs) over the conventional poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) due to the incorporation of biphenylene units and sulfone linkages in the main chain. The copolymers with 30 to 35 mol% DPODPS had not only high Tgs of 176 to 177°C, but also moderate melting temperatures (Tms) of 334 to 337°C, having good potential for the melt processing. The semicrystalline copolymers II to V had tensile strengths of 99.8 to 103.1 MPa, Young's moduli of 2.26 to 2.79 GPa, and elongations at break of 16.8 to 26.5% and exhibited outstanding thermal stability and good resistance to organic solvents. POLYM. ENG. SCI., 55:2140–2147, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
3,6‐bi(4‐fluorobenzoyl)‐N‐methylcarbazole and 3,6‐bi(4‐fluorobenzoyl)‐N‐ethylcarbazole were synthesized and used to prepare poly(arylene ether ketone)s (PAEKs) with high glass transition temperatures (Tg) and good solubility. High molecular weight amorphous PAEKs were prepared from these two difluoroketones with hydroquinone, phenolphthalein, 9,9‐bis(4‐hydroxyphenyl)fluorene and 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, respectively. All these polymers presented high thermal stability with glass transition temperatures being in the range 239–303 °C and a 5% thermal weight loss temperature above 460 °C. Compared with the Tg of phenolphthalein‐based PAEK (PEK‐C), fluorene‐based PAEK (BFEK) and phthalazinone‐based PAEK (DPEK) not containing a carbazole unit, these polymers presented a 30–50 °C increase in Tg. Meanwhile, PAEKs prepared from N‐ethylcarbazole difluoroketone showed good solubility in ordinary organic solvents, and all polymers exhibited excellent resistance to hydrochloric acid (36.5 wt%) and sodium hydroxide (50 wt%) solutions. In particular, phthalazinone‐based PAEK bearing N‐ethylcarbazole afforded simultaneously a Tg of 301 °C with good solubility. Tensile tests of films showed that these polymers have desirable mechanical properties. The carbazole‐based difluoroketones play an important role in preparing soluble PAEKs with high Tg by coordinating the relationship between chain rigidity resulting from the carbazole unit and chain distance from the side alkyl. © 2014 Society of Chemical Industry  相似文献   

11.
BACKGROUND: This investigation evaluates the effectiveness of initiator adducts for living and controlled polymerization of methacrylates, crosslinking of dimethacrylates and thermal stabilities of the resulting polymers. Adducts of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy with benzoyl peroxide and with azobisisobutyronitrile were prepared and evaluated as stabilized unimolecular initiators for the free radical polymerization of methacrylate monomers using sulfuric acid as catalyst. The monomers used were methyl methacrylate, triethylene glycol dimethacrylate (TEGDMA) and ethoxylated bisphenol A dimethacrylate (EBPADMA). RESULTS: Successful polymerization was achieved at 70 and 130 °C with reaction times ranging from 45 min to 120 h. The dispersity (D) of poly(methyl methacrylate) (PMMA) was 1.09–1.28. The livingness and extent of control over polymerization were confirmed with plots of Mn evolution as a function of monomer conversion and of the first‐order kinetics. The glass transition temperature (Tg) for PMMA was 123–128 °C. The degradation temperature (Td) for PMMA was 350–410 °C. Td for poly(TEGMA) was 250–310 °C and for poly(EBPADMA) was 320–390 °C. CONCLUSION: The initiators are suitable for free radical living and controlled polymerization of methacrylates and dimethacrylates under mild thermal and acid‐catalyzed conditions, yielding medium to high molecular weight polymers with low dispersity, high crosslinking and good thermal stability. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Benzylated waste pulps (PBzs) were synthesized from treated waste pulp (Pulp), and benzyl chloride with phase transfer catalyst (PTC), and graft copolymers (PBz‐g‐LA) were synthesized from PBzs and L‐lactic acid (LA). Thermal properties, solubility, crystallinity, and biodegradability of the obtained PBzs and graft copolymers were investigated. PBzs with the degree of substitution (DS) higher than 1.5 showed Tg and Tm in DSC measurement. All PBz‐g‐LA exhibited no Tm. However, the graft copolymers obtained from lower DS PBzs having no Tg, exhibited Tg. The solubility of PBzs enhanced with increasing DS, and the crystallinity of PBzs reduced with increasing DS because of hydrophobicity and steric effect of benzyl groups. The solubility of graft copolymers was similar to that of original PBzs. Biodegradation tests for PBzs, Pulp, and graft copolymers were performed using cellulase in 0.1 M acetate buffer solution (pH 5.5) at 37°C. All samples showed biodegradability though the biodegradation rate decreased with increasing DS of PBz. In PBz‐g‐LA, the initial biodegradation rate was faster than that of original PBz because of hydrolysis of LA units. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2658–2664, 2004  相似文献   

13.
Two polyarylaminophosphazenes, poly[bis(phenylamino)phosphazene] (PBAP) and poly[bis(p‐trifluoroethoxyphenylamino)phosphazene] (PBTAP), were successfully synthesized by ring‐opening polymerizations and nucleophilic substitution reactions. Their chemical structures, thermal properties, and surface properties were investigated by NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and water contact angles (WCA). The results indicate that the glass‐transition temperature (Tg), thermal stability, and WCAs of PBAP and PBTAP presented obviously differences; this suggested that PBTAP possessed the lower Tg and higher contact angle than PBAP. This was attributed to the influence of trifluoroethoxy at the para position of aniline. TGA measurements indicated that PBAP possessed a higher thermal stability than PBTAP; this was attributed to the strong electron‐withdrawing influence of the trifluoroethoxy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42542.  相似文献   

14.
A comparison of the thermal properties of two classes of poly(D,L ‐lactic‐glycolic acid) multiblock copolymers is reported. In particular, the results of differential scanning calorimetry, and thermogravimetric analysis of copolymers containing poly(ethylene glycol) (PEG) or diol‐terminated poly(ϵ‐caprolactone) (PCDT) segments are described. The influence of the chemical structure and the length of PEG and PCDT on thermal stability, degree of crystallinity and glass transition temperature (Tg ) is discussed. Finally, an evaluation of the hydrolytic behavior in conditions mimicking the physiological environment is reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1721–1728, 2000  相似文献   

15.
Tri‐(butanediol‐monobutyrate) citrate (TBBC) as a new plasticizer for poly(lactic acid) (PLA) was synthesized via a two‐step esterification. The chemical structure of TBBC was characterized by 1H‐nuclear magnetic resonance. The studies on solubility parameters, transparence, and storage stability indicated the good miscibility between PLA and TBBC. The glass transition, crystallization, thermal, and mechanical properties of PLA plasticized by TBBC were evaluated. With an increase in TBBC content, the glass transition temperature (Tg), melting point (Tm), and the cold crystallization temperature (Tcc) of plasticized PLA gradually shifted to a lower temperature. The elongation at break and flexibility were greatly improved by the addition of TBBC. After 30 days of storage, PLA plasticized with up to 20 wt% of TBBC exhibited good storage stability and remained the original transparence and mechanical properties. The flexibility of PLA/TBBC films can be tuned by changing TBBC content. The corresponding crystalline morphology and structure were investigated by Polarizing optical microscope and X‐ray diffraction as well. This study revealed that TBBC was miscible with PLA and may therefore be a promising plasticizer for PLA‐based packaging materials. POLYM. ENG. SCI., 55:205–213, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
Polycondensation of isosorbide with itaconic acid and succinic acid was performed in the presence of sulfuric acid as a catalyst in toluene around 140 °C under microwave irradiation. Molar ratios of itaconic acid were varied to investigate the influence of itaconic acid on molecular weights and glass transition temperatures. For polyesters of isosorbide, itaconic acid and succinic acid Tg values were found from 57 °C to 65 °C. The molecular weights obtained varied from 1200 Da for poly(isosorbide itaconate) UPE100 up to 3500 Da for poly(isosorbide succinate) UPE0. The copolyesters obtained were crosslinked radically with dimethyl itaconate giving a round shaped material with slightly raised Tg values up to 74 °C. Furthermore, with dimethyl itaconate crosslinked copolyesters showed a one‐way shape memory effect upon heating after deformation at the glass transition temperature. © 2013 Society of Chemical Industry  相似文献   

17.
The thermal behavior of poly(2‐hydroxyethyl methacrylate) [PHEMA] homopolymer and poly(2‐hydroxyethyl methacrylate‐co‐itaconic acid) [P(HEMA/IA)] copolymeric networks synthesized using a radiation‐induced polymerization technique was investigated by differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The glass‐transition temperature (Tg) of the PHEMA homopolymer was found to be 87°C. On the other hand, the Tg of the P(HEMA/IA) networks increased from 88°C to 117°C with an increasing amount of IA in the network system. The thermal degradation reaction mechanism of the P(HEMA/IA) networks was determined to be different from the PHEMA homopolymer, as confirmed by thermogravimetric analysis. It was observed that the initial thermal degradation temperature of these copolymeric networks increased from 271°C to 300°C with IA content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1602–1607, 2007  相似文献   

18.
The self‐healing behavior of poly(vinyl butyral) (PVB) is evaluated below the glass transition temperature Tg. It is found that PVB shows autonomic self‐healing even at room temperature, although Tg is around at 76°C. Furthermore, a large amount of water is found to be adsorbed on the surface of the film. This is attributed to the surface localization of hydroxyl group in PVB, which is confirmed by X‐ray photoelectron spectroscopy. Since the surface is plasticized by water, the scar applied by a razor blade is healed even in the glassy state of the bulk. Moreover, the healing efficiency is enhanced at high humidity condition, owing to the pronounced plasticizing effect by water. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42008.  相似文献   

19.
A novel bismaleimide (DOPO‐BMI) with unsymmetrical chemical structure and DOPO pendant group has been prepared. The particular molecular structure makes DOPO‐BMI show an intrinsic amorphous state with a Tg about 135°C and excellent solubility in most organic solvents, which is beneficial to the processability of bismaleimide composite materials. A series of bismaleimide‐triazine (BT) resins have been prepared based on DOPO‐BMI and 2,2‐bis(4‐cyanatophenyl)propane at various weight ratios. The prepared BT resins show outstanding solubility in organic solvent and low viscosity about 10–671 mPa s at 180°C. The cured BT resins exhibit high glass transition temperature (Tg) over 316°C. As the weight ratio of DOPO‐BMI increases to 80% (BT80), the Tg can rise to 369°C (tan δ). The cured BT resins also show good thermal stability with the 5% weight loss temperature over 400°C under both nitrogen and air atmosphere. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42882.  相似文献   

20.
BACKGROUND: Poly(lactic acid) (PLA), coming from renewable resources, can be used to solve environmental problems. However, PLA has to have a relatively high molecular weight in order to have acceptable mechanical properties as required in many applications. Chain‐extension reaction is an effective method to raise the molecular weight of PLA. RESULTS: A high molecular weight biodegradable lactic acid polymer was successfully synthesized in two steps. First, the lactic acid monomer was oligomerized to low molecular weight hydroxyl‐terminated prepolymer; the molecular weight was then increased by chain extension using 1,6‐hexamethylene diisocyanate as the chain extender. The polymer was characterized using 1H NMR analysis, gel permeation chromatography, differential scanning calorimetry and Fourier transform infrared spectroscopy. The results showed that the obtained polymer had a Mn of 27 500 g mol?1 and a Mw of 116 900 g mol?1 after 40 min of chain extension at 180 °C. The glass transition temperature (Tg) of the low molecular weight prepolymer was 47.8 °C. After chain extension, Tg increased to 53.2 °C. The mechanical and rheological properties of the obtained polymer were also investigated. CONCLUSION: The results suggest that high molecular weight PLA can be achieved by chain extension to meet conventional uses. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号