首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Poly(vinyl alcohol) (PVA), PVA/nanocellulose fiber (CNF), and PVA/CNF/graphene oxide (GO) films were prepared simply by casting stable aqueous mixed solutions. FTIR investigation indicated that hydrogen bonding existed between the interface of GO and PVA‐CNF. Scanning electron microscopy and X‐ray diffraction analysis showed that GO was uniformly dispersed in PVA‐CNF matrix. Introducing CNF into PVA caused a significant improvement in tensile strength, and further incorporating GO into PVA/CNF matrix led to a further increase. The tensile strength of the neat PVA film, PVA/CNF composite, and PVA/CNF/GO film (0.6 wt % GO) was 43, 69, and 80 MPa, respectively. Moreover, when incorporating 8 wt % CNF into PVA matrix, O2 permeability and water absorption decreased from 13.36 to 11.66 cm3/m2/day and from 164.2% to 98.8%, respectively. Further adding 0.6 wt % GO into PVA/CNF matrix resulted in a further decrease of permeability and water absorption to 3.19 cm3/m2/day and 91.2%, respectively. Furthermore, for all composite samples, the transmittance of visible light was higher than 67% at 800 nm. CNF and GO‐reinforced PVA with high mechanical and barrier properties are potential candidates for packaging industry. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45345.  相似文献   

2.
To improve the thermal and mechanical properties of liquid silicone rubber (LSR) for application, the graphene oxide (GO) was proposed to reinforce the LSR. The GO was functionalized with triethoxyvinylsilane (TEVS) by dehydration reaction to improve the dispersion and compatibility in the matrix. The structure of the functionalized graphene oxide (TEVS‐GO) was evaluated by Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD), and energy dispersive X‐ray spectroscopy (EDX). It was found that the TEVS was successfully grafted on the surface of GO. The TEVS‐GO/LSR composites were prepared via in situ polymerization. The structure of the composites was verified by FTIR, XRD, and scanning electron microscopy (SEM). The thermal properties of the composites were characterized by TGA and thermal conductivity. The results showed that the 10% weight loss temperature (T10) increased 16.0°C with only 0.3 wt % addition of TEVS‐GO and the thermal conductivity possessed a two‐fold increase, compared to the pure LSR. Furthermore, the mechanical properties were studied and results revealed that the TEVS‐GO/LSR composites with 0.3 wt % TEVS‐GO displayed a 2.3‐fold increase in tensile strength, a 2.79‐fold enhancement in tear strength, and a 1.97‐fold reinforcement in shear strength compared with the neat LSR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42582.  相似文献   

3.
Polymer nanocomposites based on poly(vinyl alcohol) (PVA)/starch blend and graphene were prepared by solution mixing and casting. Glycerol was used as a plasticizer and added in the starch dispersion. The uniform dispersion of graphene in water was achieved by using an Ultrasonicator Probe. The composites were characterized by FTIR, tensile properties, X‐ray diffraction (XRD), thermal analysis, and FE‐SEM studies. FTIR studies indicated probable hydrogen bonding interaction between the oxygen containing groups on graphene surface and the –OH groups in PVA and starch. Mechanical properties results showed that the optimum loading of graphene was 0.5 wt % in the blend. XRD studies indicated uniform dispersion of graphene in PVA/starch matrix upto 0.5 wt % loadings and further increase caused agglomeration. Thermal studies showed that the thermal stability of PVA increased and the crystallinity decreased in the presence of starch and graphene. FE‐SEM studies showed that incorporation of graphene increased the ductility of the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41827.  相似文献   

4.
Ternary composite films of poly(vinyl alcohol) (PVA), boric acid (BA), and detonation nanodiamond (DND) were prepared by aqueous solution method. Because of its excellent mechanical/thermal properties and low friction coefficient, DND is expected to offer PVA film superior performance if the puzzles of particle agglomeration in polymer matrix and fragile interface reaction between DND and PVA can be settled. BA was used as a crosslinking agent to form a strong network structure between DND and PVA. Investigation on microstructure of PVA/BA/DND films and bonding mechanisms therein shows that BA, DND, and PVA may crosslink by oxo‐bridges owing to the interaction of hydroxyl groups. The Young's modulus (E) of composite films was enhanced by nearly 3.3 times with only 0.8 wt % DND loading, and the antiwear, thermal stability, and waterproof properties can be significantly improved after the crosslinking. Meanwhile, the transparency of composite films can be well preserved even with large DND content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45449.  相似文献   

5.
High‐strength plastic materials with excellent biodegradability, non‐toxicity and economically wide availability are in high demand. Herein, we demonstrate graphene oxide (GO) composite of poly(vinyl alcohol) (PVA) as a potential bioplastic material by chemical crosslinking. For a potential bioplastic material, PVA has to be addressed for its high water absorbing capacity along with improvement in tensile strength and thermal stability. These issues were addressed by enhancing the interfacial binding between PVA and GO, covalent bonds between the two being introduced by crosslinking with dicarboxylic acids, namely succinic acid (SuA) and adipic acid (AdA). Crosslinking of neat PVA with dicarboxylic acids also resulted in enhanced swelling resistance and thermal stability. The greatest improvement in tensile strength and swelling resistance was observed for a GO crosslinked with diacids due to the synergistic effect of reinforcement and crosslinking. Improvements of 225 and 234% in the tensile strength of PVA (31.19 MPa) were observed for 5% GO–PVA samples crosslinked with 6.25 mmol AdA and 7.5 mmol SuA, respectively. For the same samples, water uptake was 44 and 29%, respectively, compared to the non‐crosslinked PVA (359%). © 2017 Society of Chemical Industry  相似文献   

6.
This study uses the solution mixing method to combine plasticized polyvinyl alcohol (PVA) as a matrix, and multiwalled carbon nanotubes (MWCNTs) as reinforcement to form PVA/MWCNTs films. The films are then laminated and hot pressed to create PVA/MWCNTs composites. The control group of PVA/MWCNTs composites is made by incorporating the melt compounding method. Diverse properties of PVA/MWCNTs composites are then evaluated. For the experimental group, the incorporation of MWCNTs improves the glass transition temperature (Tg), crystallization temperature, Tc), and thermal stability of the composites. In addition, the test results indicate that composites containing 1.5 wt % of MWCNTs have the maximum tensile strength of 51.1 MPa, whereas composites containing 2 wt % MWCNTs have the optimal electrical conductivity of 2.4 S/cm, and electromagnetic shielding effectiveness (EMI SE) of ?31.41 dB. This study proves that the solution mixing method outperforms the melt compounding method in terms of mechanical properties, dispersion, melting and crystallization behaviors, thermal stability, and EMI SE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43474.  相似文献   

7.
Poly(vinyl alcohol) (PVA) nanocomposite and modified CaCO3 nanoparticles (NPs) were fabricated by ultrasound agitation method with particle content altering from 3, 5, and 8 wt %. The CaCO3 surface was successfully treated by 10 wt % of bioactive dicarboxylic acid (DA). The influences of loading modified NPs on the thermal, mechanical, adsorption, contact angle, and physical properties of the poly(vinyl alcohol) nanocomposite films were thoroughly studied. The results showed that incorporation of modified CaCO3 into the PVA matrix had better performance than the pure PVA. Meanwhile, tensile strength, Young's modulus, and thermal stability are enhanced from 33.36 MPa, 1.26 GPs, and 242.918C (neat PVA) to 81.7 MPa, 4.81 GPa, and 312.95 °C (PVA/CaCO3‐DA NC 5 wt %), respectively. Also, the adsorption capacity of the PVA/CaCO3‐DA NCs 5 and 8 wt % revealed that the NC films could act as an appropriate absorbent for the removal of Cd(II) ions with maximum adsorption capacity of about 20.70 and 25.19 mg g?1 for Cd(II), respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45414.  相似文献   

8.
During the last decade, the nanocomposites based on layered silicate are widely studied and attracted the industrial and academic research. The effect of various loading levels of layered silicate reinforcement on the mechanical and thermal properties was studied by nano-indentation, flexural testing, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The maximum hardness (H), increased from 67 MPa for neat Spent DuraForm EX up to 170 MPa with 7 wt.% layered silicate-reinforced sample. The measured modulus (E), of unreinforced Spent DuraForm increased from 631 MPa to 2100 MPa with 7 wt.% layered silicate reinforcement. The thermal property of the EX nanocomposites revealed by DSC was improved by about 6?C up to 7 wt.% of layered silicate loading. Different levels of layered silicates dispersion as characterized using TEM and SEM correlated strongly with improvements in nanohardness and thermal properties. The improved hardness, modulus, crystalline and melting temperatures of Spent DuraForm EX nanocomposites are attributed mainly to the intercalated structures.  相似文献   

9.
In this study, the gallic acid‐based epoxy resin (GA‐ER) and alkali‐catalysed biphenyl‐4,4′‐diol formaldehyde resin (BPFR) are synthesized. Glass fibre‐reinforced GA‐ER/BPFR composites are prepared. Graphene oxide (GO) is used to improve the mechanical and thermal properties of GA‐ER/BPFR composites. Dynamic mechanical properties and thermal, mechanical, and electrical properties of the composites with different GO content are characterized. The results demonstrate that GO can enhance the mechanical and thermal properties of the composites. The glass transition temperature, Tg, of the BPFR/GA‐ER/GO composites is 20.7°C higher than the pure resin system, and the 5% weight loss temperature, Td5, is enhanced approximately 56.6°C. When the BPFR: GA‐ER mass ratio is at 4 : 6 and GO content is 1.0–1.2 wt %, the tensile and impact strengths of composites are 60.97 MPa and 32.08 kJ/m2 higher than the pure resin composites, respectively. BPFR/GA‐ER composites have better mechanical properties, and can replace common BPA epoxy resins in the fabrication of composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42637.  相似文献   

10.
Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 ± 0.39 MPa (pure HA) to 2.75 ± 0.38 MPa (2 wt.% GO/HA) and 3.3 ± 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80–90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate.  相似文献   

11.
Novel bio‐based polyurethane/graphene oxide (GO) nanocomposites have been successfully synthesized from biorenewable epoxidized soybean‐castor oil fatty acid‐based polyols with considerable improvement in mechanical and thermal properties. The GO was synthesized via a modified pressurized oxidation method, and was investigated using Raman spectra, AFM and XPS, respectively. The toughening mechanism of GO in the bio‐based polyurethane matrix was explored. The elongation at break and toughness of polyurethane were increased by 1.3 and 0.8 times with incorporation of 0.4 wt % GO, respectively. However, insignificant changes in both mechanical strength and modulus were observed by adding GO. The results from thermal analysis indicated that the GO acts as new secondary soft segments in the polyurethane which lead to a considerable decrease in the glass transition temperature and crosslink density. The SEM morphology of the fracture surface after tensile testing showed a considerable aggregation of graphene oxide at concentrations above 0.4 wt %. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41751.  相似文献   

12.
Graphene oxide (GO) was well dispersed in poly(vinyl alcohol) (PVA) diluted aqueous solution, and then the mixture was electrospun into GO/PVA composite nanofibers. Electron microscopy and Raman spectroscopy on the as‐prepared and calcined samples confirm the uniform distribution of GO sheets in the nanofibers. The thermal and mechanical properties of the nanofibers vary considerably with different GO filler contents. The decomposition temperatures of the GO/PVA composite nanofiber dropped by 38–50°C compared with pure PVA. A very small loading of 0.02 wt % GO increases the tensile strength of the nanofibers by 42 times. A porous 3D structure was realized by postcalcining nanofibers in H2. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The present study describes microwave (MW)-assisted rapid synthesis of biocompatible poly(vinyl alcohol) (PVA) composite films that demonstrate synergy between reinforcement and crosslinking. Bacterial cellulose (5% w/w) nanowhiskers (reinforcement) and tartaric acid 35% (w/w) (crosslinker) are incorporated in PVA to prepare crosslinked cellulose–PVA composite films. The properties of thus prepared crosslinked cellulose–PVA composite films are compared with samples crosslinked with conventional hot air oven heating (CH). Crosslinking by both of the methods reduces water absorption of PVA by around an order of magnitude and improves its thermal stability. An increase in strength from 42 (PVA) to 172 MPa and 159 MPa for MW and CH crosslinked samples, respectively is also observed. Although composites prepared using MW and CH show similar properties, MW takes only 14 min compared to 2 h in case of CH. Notably, the prepared composites demonstrate hemocompatibility and cytocompatibility, and may also be explored for biomedical applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47393.  相似文献   

14.
To further improve the processability of water plasticized poly(vinyl alcohol) (PVA), boric acid (BA), which can rapidly form reversible crosslinked structure with the hydroxyl groups of PVA, was adopted as a modifier, and the water states, thermal performance, and rheological properties of modified PVA were investigated. The results showed that ascribing to the formation of the crosslinked structure between PVA and BA, the content of nonfreezing water in system increased, indicating that the bondage of PVA matrix on water enhanced, thus retarding the tempestuous evaporation of water in system during melt process and making more water remained in system to play the role of plasticizer. Meanwhile, this crosslinked structure shielded part hydroxyl groups in PVA chains, leading to the further weakening of the self‐hydrogen bonding of PVA, and guaranteeing a lower melting point and higher decomposition temperature, thus obtaining a quite wide thermal processing window, i.e., ≥179°C. The melt viscosity of BA modified PVA slightly increased, but still satisfied the requirements for thermal processing, thus reinforcing the flow stability of the melt at high shearing rate. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43246.  相似文献   

15.
The uniform dispersion of cellulose nanofibers (CNFs) in non‐polar polymer matrices is a primary problem to overcome in creating novel nanocomposites from these materials. The aim of this study was to produce CNF‐polyethylene (PE) nanocomposites by melt compounding followed by injection molding to investigate the possibility of using polyvinyl alcohol (PVA) to improve the dispersion of CNF in the PE matrix. The tensile strength of CNF‐ filled composites was 17.4 MPa with the addition of 5 wt % CNF–PVA, which was 25% higher than the strength of neat PE. The tensile modulus of elasticity increased by 40% with 5% CNF–PVA addition. Flexural properties also significantly increased with increased CNF loading. Shear viscosity increased with increasing CNF content. The elastic moduli of the PE/CNF composites from rheological measurements were greater than those of the neat PE matrix because of the intrinsic rigidity of CNF. Melt creep compliance decreased by about 13% and 45% for the composites with 5 wt % CNF and 10 wt % CNF, respectively. It is expected that the PVA carrier system can contribute to the development of a process methodology to effectively disperse CNFs containing water in a polymer matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42933.  相似文献   

16.
An easy and efficient approach by using carboxyl functionalized CNTs (CNT‐COOH) as nano reinforcement was reported to develop advanced thermosetting composite laminates. Benzoxazine containing cyano groups (BA‐ph) grafted with CNTs (CNT‐g‐BA‐ph), obtained from the in situ reaction of BA‐ph and CNT‐COOH, was used as polymer matrix and processed into glass fiber (GF)‐reinforced laminates through hot‐pressed technology. FTIR study confirmed that CNT‐COOH was bonded to BA‐ph matrices. The flexural strength and modulus increased from 450 MPa and 26.4 GPa in BA‐ph laminate to 650 MPa and 28.4 GPa in CNT‐g‐BA‐ph/GF composite, leading to 44 and 7.5% increase, respectively. The SEM image observation indicated that the CNT‐COOH was distributed homogeneously in the matrix, and thus significantly eliminated the resin‐rich regions and free volumes. Besides, the obtained composite laminates showed excellent thermal and thermal‐oxidative stabilities with the onset degradation temperature up to 624°C in N2 and 522°C in air. This study demonstrated that CNT‐COOH grafted on thermosetting matrices through in situ reaction can lead to obvious mechanical and thermal increments, which provided a new and effective way to design and improve the properties of composite laminates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Graphene oxide (GO) as a positive reinforcement filler was dispersed into a poly(vinyl alcohol) (PVA) dope and wet‐spun into composite fibers. The effects of two EtOH coagulation baths maintained at ?5 and 25 °C, respectively, on the morphology, structure, and mechanical properties of the composite fibers were investigated. The results show that gel spinning at ?5 °C led to a relatively large shrinkage ratio, thin diameter, and low porosity of the as‐spun fibers. Simultaneously, the low coagulation temperature also greatly contributed to the formation and preservation of the liquid‐crystalline phase of the GO sheets and interrupted the crystalline zone of PVA less. As a result, either the tenacity or the elongation at break of the fibers spun at ?5 °C was higher than those of the fibers spun through a coagulation bath at 25 °C. In particular, 1 wt % GO showed the highest reinforcement effects among all of the wet‐spun composite fibers. Hence, controlling the gelling–demixing process at a low temperature will provide more instructive insights for tailoring functional industrial textiles with excellent mechanical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45463.  相似文献   

18.
In this study, interaction and compatibility between sugar‐beet pulp (SBP) and polyvinyl alcohol (PVA) in blend films was assessed. Film‐forming dispersions of different ratios of SBP to PVA (100/0, 75/25, 50/50, and 25/75) were cast at room temperature. The effects of adding PVA to SBP on the resulting film's physical, mechanical and barrier properties and thermal stability were investigated. X‐ray diffraction and environmental scanning electron microscopy (ESEM) were used to characterize the structure and morphology of the composites. When PVA was also added to the composite films, the films became softer, less rigid and more stretchable than pure SBP films. The addition of PVA gave significantly greater elongation at break (12.45%) and lower water vapor permeability (1.55 × 10?10 g s?1 m?1 Pa?1), but tensile strength did not markedly change, remaining around 59.68 MPa. Thermogravimetric analysis also showed that SBP/PVA film had better thermal stability than SBP film. The ESEM results showed that the compatibility of SBP50/PVA50 was better than those of other composite films. These results suggest that when taking all the studied variables into account, composite films formulated with 50% PVA are most suitable for various packaging applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41354.  相似文献   

19.
Homogenous organic dispersion of graphene oxide (GO) sheets was prepared by a solvent-exchange method. This method enabled the simultaneous achievement of full exfoliation and high concentration of GO in several organic solvents such as dimethyl sulfoxide, which would facilitate the fabrication of individual graphene reinforced polymer composites through a solution-based process. To this end, poly [2,2′-(p-oxydiphenylene)-5,5′-bibenzimidazole] (OPBI)/GO composites were fabricated. X-ray diffraction characterization showed that the GO sheets were individually incorporated into the OPBI matrix. Scanning electron microscope images that taken of the fracture surface of the composites revealed that the GO sheets were spontaneous aligned parallel to the surface of the composite films as the content of GO exceeded 0.3 wt.%. The incorporation of GO also showed profound effects on the macroscopic properties of OPBI. Compared to pure OPBI, the composites showed a 17% increase in Young’s modulus, 33% increase in tensile strength and 88% improvement in toughness by the addition of only 0.3 wt.% of GO. Moreover, although the thermal stability of GO is far inferior to OPBI, it is found the thermal stability of OPBI is still improved by the addition of GO.  相似文献   

20.
To improve the safety of HMX, a two‐dimensional (2D) graphene oxide (GO) was introduced to HMX by the solvent nonsolvent method. The morphology, composition, thermal decomposition characteristic were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), thermogravimetry (TG) and differential scanning calorimetry (DSC). Compared to the previous reports, GO sheets exhibited better desensitizing effect than [60]Fullerene and CNTs. When 2.0 wt‐% GO sheets were added, the impact sensitivity of raw HMX decreased from 100 to 10 %, and the friction sensitivity reduced from 100 to 32 %. The DSC results proved that GO sheets were compatible with HMX. In addition, by determining the thermal decomposition kinetic parameters of the samples, it was found that the activation energy (Ea) of HMX with 2.0 wt‐% GO increased by 23.5 kJ mol−1, suggesting that GO sheets could improve the thermal stability of HMX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号